Patients with the genomic instability syndrome Fanconi anemia (FA) commonly develop progressive bone marrow failure and have a high risk of cancer. The prominent role of the FA protein family involves DNA damage response and/or repair. Oxidative stress, defined as an imbalance between the production of reactive oxygen species and antioxidant defense, is considered to be an important pathogenic factor in leukemia-prone bone marrow diseases such as FA. Cellular responses inducing resistance to oxidative stress are important for cellular survival, organism lifespan, and cancer prevention, but until recently, mammalian factors regulating resistance to oxidative stress have not been well characterized. Significant evidence supports excessive apoptosis of hematopoietic stem/progenitor cells, induced by stresses, most significantly oxidative stress, as a critical factor in the pathogenesis of bone marrow failure and leukemia progression in FA. In this brief review, we discuss the functional link between FA proteins and oxidative DNA damage response/repair, with emphasis on the implication of oxidative stress in the pathophysiology and abnormal hematopoiesis in FA.
Gastric cancer (GC) is the fifth most commonly diagnosed malignancy. Paclitaxel (PTX) is an effective first-line chemotherapy drug in GC treatment, but the resistance of PTX attenuates the therapeutic effect. Circular RNA circ-PVT1 can exert the oncogenic effect in GC. But the function of circ-PVT1 involved in PTX resistance of GC is still unknown. In the present study, the expression levels of circ-PVT1, miR-124-3p and ZEB1 in PTX-resistant GC tissues and cells were detected by quantitative real-time polymerase chain reaction (RT-qPCR). PTX resistance in PTX-resistant cells was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The protein levels of Zinc finger E-box binding homeobox 1 (ZEB1), P-glycoprotein (P-gp) and glutathione S-transferase (GST-π) were detected by Western blot assay. Cell apoptosis and invasion were measured in PTX-resistant cells by flow cytometry and transwell invasion assays, severally. The interaction between miR-124-3p and circ-PVT1 or ZEB1 was predicted by starBase software, and then verified by the dual-luciferase reporter assay. The role of circ-PVT1 in PTX resistance of GC in vivo was measured by xenograft tumor model. Our results showed that circ-PVT1 expression was up-regulated in PTX-resistant GC tissues and cells. Circ-PVT1 down-regulation enhanced PTX sensitivity in PTX-resistant GC cells by negatively regulating miR-124-3p. ZEB1 served as a direct target of miR-124-3p. Circ-PVT1 enhanced ZEB1 expression by sponging miR-124-3p. Circ-PVT1 knockdown increased PTX sensitivity of GC in vivo. Taken together, our studies disclosed that circ-PVT1 facilitated PTX resistance by up-regulating ZEB1 mediated via miR-124-3p, suggesting an underlying therapeutic strategy for GC.
Purpose: Hepatocellular carcinoma (HCC) associated with chronic liver disease is known to show an obvious multistage process of tumor progression. We previously identified heat shock protein 70 as a molecular marker of early HCC during investigation of expression profiling in multistage hepatocarcinogenesis. In this report, we examined cyclase-associated protein 2 (CAP2), which is also listed as an up-regulated gene in early HCC. Experimental Design: We measured the level of CAP2 mRNA by real-time quantitative PCR. We raised a polyclonal antibody against CAP2 and we confirmed the expression of CAP2 by immunoblotting and immunohistochemistry in HCC cell lines and HCC tissues. Results: According to real-time quantitative PCR, the level of CAP2 mRNA was up-regulated in early HCC when compared with noncancerous liver tissue, and it was further up-regulated in progressed HCC.We raised a polyclonal antibody against CAP2, which showed a single 53-kDa band of strong intensity in the human HCC cell lines and HCC tissues but only a weak band in the noncancerous liver tissues in Western blot analysis. Immunohistochemical examination of CAP2 revealed its significant overexpression in early HCC when compared with noncancerous and precancerous lesions and in progressed HCC when compared with early HCC. Conclusion: Our findings show that CAP2 is up-regulated in HCC when compared with noncancerous and precancerous lesions.This is the first report that proves that CAP2 is up-regulated in human cancers and that this is possibly related to multistage hepatocarcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.