The commercially available TiO 2 Degussa P25 was modified using a simple technique to produce a visible-light-actived indium and carbon doped P25 catalyst. The modified photocatalysts have been successfully obtained by thermal heating method. These as-obtained products were successfully characterized by X-ray diffraction (XRD), X-ray photoelectrion spectroscopy (XPS), scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), UV-Vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) spectroscopy respectively. The photocatalytic activities of all prepared catalysts were evaluated by the degradation of organic dyes including methylene blue (MB) and Reactive Red 4 (RR4) under visible light irradiation. As the result shown, the indium and carbon co-doped on P25 nanocomposites possessed the extended light absorption in visible light and better charge separation capability as compared to the pristine P25. The optimum loading of In 3+ ions on P25 was 15%. Moreover, 15% In 2 O 3 /C-P25 showed the highest degradation rate of organic dye, which the removal efficiency can reach over 90% after 90 minutes and the corresponding hydrogen evolution rate of 15% In 2 O 3 /C-P25 was 9 times than P25. It was concluded that the synergistic effects of In 3+ ions and carbon narrowed the band gap of TiO 2 and promoted charge separation, which played a significant role for the enhancement of photoactivity. In addition, it was observed that the photo-degradation for all catalysts followed the first order reaction kinetics. Furthermore, the influence of initial pH values on the photocatalytic degradation of MB and RR4 using 15% In 2 O 3 /C-P25 catalyst was also investigated. Finally, the stability test of photocatalysts was carried out and the photocatalytic mechanism was explained concretely.
Pollution of freshwater caused by organic compounds, especially nitro aromatic compounds and rhodamine B, has aroused deep concern about the sustainable development of the earth in the past decades. Employing...
Based on the enhanced charge separation efficiency of the one-dimensional structure and strong surface plasmon resonance (SPR) of gold, a gold modified TiO2 nanotube (Au/TiO2NTs) glucose photoelectrochemical (PEC) sensor was prepared. It could be activated by visible red light (625 nm). Under optimal conditions, the Au/TiO2NTs sensor exhibited a good sensitivity of 170.37 μA·mM−1·cm−2 in the range of 1–90 μM (R2 = 0.9993), and a detection limit of 1.3 μM (S/N = 3). Due to its high selectivity, good anti-interference ability, and long-term stability, the fabricated Au/TiO2NTs sensor provides practical detection of glucose. It is expected to be used in the construction of non-invasive PEC biosensors.
Photocatalytic water splitting for hydrogen generation is a significant pathway for sustainable energy conversion and production. The photocatalysts with a Z-scheme water splitting charge transfer pathway is superior due to the good separation and migration ability of photoexcited charge carriers. Herein, Co3O4/g-C3N4 photocatalysts with Z-scheme charge transfer pathway were successfully constructed by an electrostatic interaction-annealing method. The as-prepared Co3O4/g-C3N4 ultra-thin nanosheets were tested and analyzed by XRD, EA, ICP, SEM, TEM, AFM, XPS, UV-Vis DRS, PL and photoelectrochemical measurements. Moreover, the influences of fabrication parameters on performance of Co3O4/g-C3N4 catalysts were investigated, and 0.5% Co3O4/g-C3N4 exhibited the optimal activity. Based on the characterization and catalytic performance, the Z-scheme charge transfer pathway of Co3O4/g-C3N4 was established and put forward. To further improve the catalytic performance of Co3O4/g-C3N4, 0.5% Pt was added as a co-catalyst. The obtained Pt/0.5% Co3O4/g-C3N4 was recyclable and remained the original catalytic water splitting performance within 20 h. The modification of Co3O4 and Pt improved the separation and migration of e− and h+, and induced the increased hydrogen evolution rate of g-C3N4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.