The use of beta-blockers has emerged as a beneficial treatment for cardiac hypertrophy. Hypoxia-inducible factor-1alpha (HIF-1alpha) is tightly regulated in the ventricular myocardium. However, the expression of HIF-1alpha in cardiac hypertrophy due to pressure overload and after treatment with beta-blocker is little known. To evaluate the effect of carvedilol on both myocardial HIF-1alpha expression and cardiac hypertrophy, infra-renal aortic banding was performed for 4 weeks in adult Sprague-Dawley rats to induce cardiac hypertrophy. Carvedilol at 50 mg/kg body weight per day after surgery was given. Heart weight and the ratio of heart weight and body weight increased significantly after aortic banding for 4 weeks in the absence of drug treatment. Mean arterial pressure increased from 80 +/- 9 mmHg in the sham group to 94 +/-5 mmHg (p < 0.001) in the banding group. Echocardiography showed concentric hypertrophy after aortic banding. Mean arterial pressure decreased after treatment with carvedilol. The increased wall thickness and heart weight was reversed to normal by carvedilol. Western blot showed that HIF-1alpha, vascular endothelial growth factor (VEGF) and brain natriuretic peptide (BNP) proteins were up-regulated and nerve growth factor-beta (NGF-beta) down-regulated in the banding group. Treatment with valsartan, doxazosin, or N-acetylcysteine did not significantly affect HIF-1alpha and VEGF proteins expression in the banding groups. Real-time polymerase chain reaction showed that mRNA of HIF-1alpha, VEGF and BNP increased and mRNA of NGF-beta decreased in the banding group. Treatment with carvedilol reversed both protein and mRNA of HIF-1alpha, VEGF, BNP, and NGF-beta to the baseline values. Increased immunohistochemical labeling of HIF-1alpha, VEGF, and BNP in the ventricular myocardium was observed in the banding group and carvedilol again normalized the labeling. In conclusion, HIF-1alpha, VEGF, and BNP mRNA and protein expression were up-regulated, while NGF-beta mRNA and protein was downregulated in the rat model of pressure-overloaded cardiac hypertrophy. Treatment with carvedilol is associated with a reversal of abnormal regulation of HIF-1alpha, VEGF, BNP, and NGF-beta in the hypertrophic myocardium.
G protein-coupled receptors (GPCRs) participate in a variety of physiologic functions, and several GPCRs have critical physiologic and pathophysiologic roles in the regulation of renal function. We investigated the role of Gpr97, a newly identified member of the adhesion GPCR family, in AKI. AKI was induced by ischemia-reperfusion or cisplatin treatment in Gpr97-deficient mice. We assessed renal injury in these models and in patients with acute tubular necrosis by histologic examination, and we conducted microarray analysis and assays to determine the molecular mechanisms of Gpr97 function. Gpr97 was upregulated in the kidneys from mice with AKI and patients with biopsy-proven acute tubular necrosis compared with healthy controls. In AKI models, Gpr97-deficient mice had significantly less renal injury and inflammation than wild-type mice. Gpr97 deficiency also attenuated the AKI-induced expression of semaphorin 3A (Sema3A), a potential early diagnostic biomarker of renal injury. In NRK-52E cells subjected to oxygen-glucose deprivation, siRNA-mediated knockdown of Gpr97 further increased the expression of survivin and phosphorylated STAT3 and reduced toll-like receptor 4 expression. Cotreatment with recombinant murine Sema3A protein counteracted these effects. Finally, additional and studies, including electrophoretic mobility shift assays and luciferase reporter assays, showed that Gpr97 deficiency attenuates ischemia-reperfusion-induced expression of the RNA-binding protein human antigen R, which post-transcriptionally regulates Sema3A expression. Gpr97 is an important mediator of AKI, and pharmacologic targeting of Gpr97-mediated Sema3A signaling at multiple levels may provide a novel approach for the treatment of AKI.
In this study, we examined the molecular signals that control apoptosis in cloned CD4+ helper T cells. Resting T cells were highly resistant to spontaneous death in the absence of exogenous stress, and they expressed low levels of bcl-x protein and no detectable bcl-2. Upon exposure to gamma radiation, resting cells rapidly underwent apoptotic death. Incubation with IL-2 prevented this cell death and led to a large increase in bcl-2 protein expression and only a modest up-regulation in bcl-x. The combination of anti-CD3 and anti-CD28 mAbs was also effective in protecting the cells against radiation-induced apoptosis; however, this protection was associated predominantly with bcl-x up-regulation, and only a small induction of bcl-2 protein was observed. Finally, cyclosporin A blocked both IL-2 secretion and bcl-2 induction in response to CD3 plus CD28 stimulation, suggesting a role for endogenous lymphokine production in the induction of bcl-2. These data support a model in which memory T cells remain resistant to apoptosis because intermittent contact with Ag-bearing APC and IL-2R occupancy result in the expression of the life-proteins bcl-2 and bcl-x.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.