A general copper-catalyzed method for the sulfonylation of arylboronic acids with sulfinate salts is described. A variety of alkyl-aryl, diaryl, and alkyl-heteroaryl sulfones were synthesized in good yield.
Indole aziridines and their hydroxyl derivatives have been used for the preparation of a small library of novel functionalized bisindoles. Diversification of these building blocks by solvent-free C-C-bond formation on solid support yielded annulated Hymenialdisine analogues under mild reaction conditions. Indoles as C-nucleophiles form potentially pharmacologically active bisindoles through an electrophilic aromatic substitution pathway in good to excellent yields. Further transformations of the indole aziridines with H-, N-, and O-nucleophiles demonstrate their versatility as key intermediates in diversity oriented synthesis. The hydroxyl precursor leads also to unsymmetrical bisindoles under similar reaction conditions. Important intermediates and final library compounds were confirmed by X-ray analysis. Theoretical studies on these systems show the possible cationic intermediate in the substitution pathway.
Novel unsymmetrical bisindoles were synthesized by a solvent-free C-C bond-formation reaction under mild conditions. Starting from aziridines or hydroxyl precursors, indoles have been used as C-nucleophiles to form new pharmacologically interesting bisindoles via an electrophilic aromatic substitution pathway in good to excellent yields. [reaction: see text]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.