After >8,000 infections and >700 deaths worldwide, the pathogenesis of the new infectious disease, severe acute respiratory syndrome (SARS), remains poorly understood. We investigated 18 autopsies of patients who had suspected SARS; 8 cases were confirmed as SARS. We evaluated white blood cells from 22 confirmed SARS patients at various stages of the disease. T lymphocyte counts in 65 confirmed and 35 misdiagnosed SARS cases also were analyzed retrospectively. SARS viral particles and genomic sequence were detected in a large number of circulating lymphocytes, monocytes, and lymphoid tissues, as well as in the epithelial cells of the respiratory tract, the mucosa of the intestine, the epithelium of the renal distal tubules, the neurons of the brain, and macrophages in different organs. SARS virus seemed to be capable of infecting multiple cell types in several organs; immune cells and pulmonary epithelium were identified as the main sites of injury. A comprehensive theory of pathogenesis is proposed for SARS with immune and lung damage as key features.
The identification and targeted therapy of cells involved in hepatocellular carcinoma (HCC) recurrence remain challenging. Here, we generated a monoclonal antibody against recurrent HCC, 1B50-1, that bound the isoform 5 of the α2δ1 subunit of voltage-gated calcium channels and identified a subset of tumor-initiating cells (TICs) with stem cell-like properties. A surgical margin with cells detected by 1B50-1 predicted rapid recurrence. Furthermore, 1B50-1 had a therapeutic effect on HCC engraftments by eliminating TICs. Finally, α2δ1 knockdown reduced self-renewal and tumor formation capacities and induced apoptosis of TICs, whereas its overexpression led to enhanced sphere formation, which is regulated by calcium influx. Thus, α2δ1 is a functional liver TIC marker, and its inhibitors may serve as potential anti-HCC drugs.
The ATP-gated P2X7 has been shown to play an important role in invasiveness and metastasis of some tumors. However, the possible links and underlying mechanisms between P2X7 and prostate cancer have not been elucidated. Here, we demonstrated that P2X7 was highly expressed in some prostate cancer cells. Down-regulation of P2X7 by siRNA significantly attenuated ATP- or BzATP-driven migration and invasion of prostate cancer cells in vitro, and inhibited tumor invasiveness and metastases in nude mice. In addition, silencing of P2X7 remarkably attenuated ATP- or BzATP- driven expression changes of EMT/invasion-related genes Snail, E-cadherin, Claudin-1, IL-8 and MMP-3, and weakened the phosphorylation of PI3K/AKT and ERK1/2 in vitro. Similar effects were observed in nude mice. These data indicate that P2X7 stimulates cell invasion and metastasis in prostate cancer cells via some EMT/invasion-related genes, as well as PI3K/AKT and ERK1/2 signaling pathways. P2X7 could be a promising therapeutic target for prostate cancer.
Enhancer of zeste homolog 2 (EZH2) is a key epigenetic regulator that catalyzes the trimethylation of H3K27 and is modulated by post-translational modifications (PTMs). However, the precise regulation of EZH2 PTMs remains elusive. We, herein, report that EZH2 is acetylated by acetyltransferase P300/CBP-associated factor (PCAF) and is deacetylated by deacetylase SIRT1. We identified that PCAF interacts with and acetylates EZH2 mainly at lysine 348 (K348). Mechanistically, K348 acetylation decreases EZH2 phosphorylation at T345 and T487 and increases EZH2 stability without disrupting the formation of polycomb repressive complex 2 (PRC2). Functionally, EZH2 K348 acetylation enhances its capacity in suppression of the target genes and promotes lung cancer cell migration and invasion. Further, elevated EZH2 K348 acetylation in lung adenocarcinoma patients predicts a poor prognosis. Our findings define a new mechanism underlying EZH2 modulation by linking EZH2 acetylation to its phosphorylation that stabilizes EZH2 and promotes lung adenocarcinoma progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.