Absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties play key roles in the discovery/development of drugs, pesticides, food additives, consumer products, and industrial chemicals. This information is especially useful when to conduct environmental and human hazard assessment. The most critical rate limiting step in the chemical safety assessment workflow is the availability of high quality data. This paper describes an ADMET structure-activity relationship database, abbreviated as admetSAR. It is an open source, text and structure searchable, and continually updated database that collects, curates, and manages available ADMET-associated properties data from the published literature. In admetSAR, over 210,000 ADMET annotated data points for more than 96,000 unique compounds with 45 kinds of ADMET-associated properties, proteins, species, or organisms have been carefully curated from a large number of diverse literatures. The database provides a user-friendly interface to query a specific chemical profile, using either CAS registry number, common name, or structure similarity. In addition, the database includes 22 qualitative classification and 5 quantitative regression models with highly predictive accuracy, allowing to estimate ecological/mammalian ADMET properties for novel chemicals. AdmetSAR is accessible free of charge at http://www.admetexp.org.
Despite the considerable progress in the classification of the idiopathic interstitial pneumonias (IIPs), the lack of an international standard has resulted in variable and confusing diagnostic criteria and terminology. The advent of high-resolution computerized tomography, the narrowed pathologic definition of usual interstitial pneumonia (UIP) and recognition of the prognostic importance of separating UIP from other IIP patterns have profoundly changed the approach to the IIPs. This is an international Consensus Statement defining the clinical manifestations, pathology, and radiologic features of patients with IIP. The major objectives of this statement are to standardize the classification of the idiopathic interstitial pneumonias (IIPs) and to establish a uniform set of definitions and criteria for the diagnosis of IIPs. The targeted specialties are pulmonologists, radiologists, and pathologists. A multidisciplinary core panel was responsible for review of background articles and writing of the document. In addition, this group reviewed the clinical, radiologic, and pathologic aspects of a wide spectrum of cases of diffuse parenchymal interstitial lung diseases to establish a uniform and consistent approach to these diseases and to clarify the terminology, definitions, and descriptions used in routine clinical practice. The final statement was drafted after a series of meetings of the entire committee. The level of evidence for the recommendations made in this statement is largely that of expert opinion developed by consensus. This classification of IIPs includes seven clinico-radiologic-pathologic entities: idiopathic pulmonary fibrosis (IPF), nonspecific interstitial pneumonia, cryptogenic organizing pneumonia, acute interstitial pneumonia, respiratory bronchiolitis-associated interstitial lung disease, desquamative interstitial pneumonia, and lymphoid interstitial pneumonia. The need for dynamic interaction between pathologists, radiologists, and pulmonologists to accurately diagnose these disorders is emphasized. The level of evidence for the recommendations made in this Statement is largely that of expert opinion developed by consensus. This Statement is an integrated clinical, radiologic, and pathologic approach to the classification of the IIPs. Use of this international multidisciplinary classification will provide a standardized nomenclature and diagnostic criteria for IIP. This Statement provides a framework for the future study of these entities. Key Messages * Unclassifiable interstitial pneumonia : Some cases are unclassifiable for a variety of reasons (see text). † This group represents a heterogeneous group with poorly characterized clinical and radiologic features that needs further study. ‡ COP is the preferred term, but it is synonymous with idiopathic bronchiolitis obliterans organizing pneumonia.
In the last decade, inertial microfluidics has attracted significant attention and a wide variety of channel designs that focus, concentrate and separate particles and fluids have been demonstrated. In contrast to conventional microfluidic technologies, where fluid inertia is negligible and flow remains almost within the Stokes flow region with very low Reynolds number (Re < 1), inertial microfluidics works in the intermediate Reynolds number range (~1 < Re < ~100) between Stokes and turbulent regimes. In this intermediate range, both inertia and fluid viscosity are finite and bring about several intriguing effects that form the basis of inertial microfluidics including (i) inertial migration and (ii) secondary flow. Due to the superior features of high-throughput, simplicity, precise manipulation and low cost, inertial microfluidics is a very promising candidate for cellular sample processing, especially for samples with low abundant targets. In this review, we first discuss the fundamental kinematics of particles in microchannels to familiarise readers with the mechanisms and underlying physics in inertial microfluidic systems. We then present a comprehensive review of recent developments and key applications of inertial microfluidic systems according to their microchannel structures. Finally, we discuss the perspective of employing fluid inertia in microfluidics for particle manipulation. Due to the superior benefits of inertial microfluidics, this promising technology will still be an attractive topic in the near future, with more novel designs and further applications in biology, medicine and industry on the horizon. ABSTRACT:In the last decade, inertial microfluidics has attracted significant attention and a wide variety of channel designs that focus, concentrate and separate particles and fluids have been demonstrated. In contrast to conventional microfluidic technologies, where fluid inertia is negligible and flow remains almost within Stokes flow region with very low Reynolds number Re <<1, inertial microfluidics works in the intermediate Reynolds number range (~1 < Re < ~100) between Stokes and turbulent regimes. In this intermediate range, both inertia and fluid viscosity are finite, and bring about several intriguing effects that form the basis of inertial microfluidics including: (i) inertial migration and (ii) secondary flow. Due to the superior features of high-throughput, simplicity, precise manipulation and low cost, inertial microfluidics is a very promising candidate for cellular sample processing, especially for sample with low abundant targets. In this review, we first discuss the fundamental kinematics of particles in microchannels to familiarise readers with mechanisms and underlying physics in inertial microfluidic systems. We then present a comprehensive review of recent developments and key applications of inertial microfluidic systems according to their microchannel structures. Finally, we discuss the perspective of employing fluid inertia in microfluidics for particle manipu...
Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal inhibitory or effective concentration ranged from 0.2 to 10 µM. Moreover, simvastatin and ketoconazole showed potent antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these methods could be powerful tools in prediction of DTIs and drug repositioning.
The stability of various spherical phases formed in conformationally asymmetric AB diblock and architecture asymmetric AB m miktoarm block copolymers is investigated using self-consistent field theory. Both the conformational and architecture asymmetries are unified into a parameter of conformationally asymmetric degree, ε. We find that a complex spherical phase, the σ phase, becomes stable and its phase region expands between bcc and hexagonal phases as increasing ε. Only for large conformational asymmetry, for example, ε = 9 (or m = 3), the A15 phase becomes stable in the region between the σ phase and the hexagonal phase and its phase region terminates at the intermediate segregation region. Compared with the σ phase, the A15 phase has more favorable interfacial energy by enabling the formation of larger spherical domains, and therefore, it becomes more stable in the region of more symmetric volume fraction and stronger segregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.