Human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus (SARS-CoV) and 2019 novel coronavirus (2019-nCoV, also known as SARS-CoV-2), lead global epidemics with high morbidity and mortality. However, there are currently no effective drugs targeting 2019-nCoV/SARS-CoV-2. Drug repurposing, representing as an effective drug discovery strategy from existing drugs, could shorten the time and reduce the cost compared to de novo drug discovery. In this study, we present an integrative, antiviral drug repurposing methodology implementing a systems pharmacology-based network medicine platform, quantifying the interplay between the HCoV-host interactome and drug targets in the human protein-protein interaction network. Phylogenetic analyses of 15 HCoV whole genomes reveal that 2019-nCoV/SARS-CoV-2 shares the highest nucleotide sequence identity with SARS-CoV (79.7%). Specifically, the envelope and nucleocapsid proteins of 2019-nCoV/SARS-CoV-2 are two evolutionarily conserved regions, having the sequence identities of 96% and 89.6%, respectively, compared to SARS-CoV. Using network proximity analyses of drug targets and HCoV-host interactions in the human interactome, we prioritize 16 potential anti-HCoV repurposable drugs (e.g., melatonin, mercaptopurine, and sirolimus) that are further validated by enrichment analyses of drug-gene signatures and HCoV-induced transcriptomics data in human cell lines. We further identify three potential drug combinations (e.g., sirolimus plus dactinomycin, mercaptopurine plus melatonin, and toremifene plus emodin) captured by the "Complementary Exposure" pattern: the targets of the drugs both hit the HCoV-host subnetwork, but target separate neighborhoods in the human interactome network. In summary, this study offers powerful network-based methodologies for rapid identification of candidate repurposable drugs and potential drug combinations targeting 2019-nCoV/SARS-CoV-2.
Absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties play key roles in the discovery/development of drugs, pesticides, food additives, consumer products, and industrial chemicals. This information is especially useful when to conduct environmental and human hazard assessment. The most critical rate limiting step in the chemical safety assessment workflow is the availability of high quality data. This paper describes an ADMET structure-activity relationship database, abbreviated as admetSAR. It is an open source, text and structure searchable, and continually updated database that collects, curates, and manages available ADMET-associated properties data from the published literature. In admetSAR, over 210,000 ADMET annotated data points for more than 96,000 unique compounds with 45 kinds of ADMET-associated properties, proteins, species, or organisms have been carefully curated from a large number of diverse literatures. The database provides a user-friendly interface to query a specific chemical profile, using either CAS registry number, common name, or structure similarity. In addition, the database includes 22 qualitative classification and 5 quantitative regression models with highly predictive accuracy, allowing to estimate ecological/mammalian ADMET properties for novel chemicals. AdmetSAR is accessible free of charge at http://www.admetexp.org.
Drug repurposing or repositioning is a technique whereby existing drugs are used to treat emerging and challenging diseases, including COVID-19. Drug repurposing has become a promising approach because of the opportunity for reduced development timelines and overall costs. In the big data era, artificial intelligence (AI) and network medicine offer cutting-edge application of information science to defining disease, medicine, therapeutics, and identifying targets with the least error. In this Review, we introduce guidelines on how to use AI for accelerating drug repurposing or repositioning, for which AI approaches are not just formidable but are also necessary. We discuss how to use AI models in precision medicine, and as an example, how AI models can accelerate COVID-19 drug repurposing. Rapidly developing, powerful, and innovative AI and network medicine technologies can expedite therapeutic development. This Review provides a strong rationale for using AI-based assistive tools for drug repurposing medications for human disease, including during the COVID-19 pandemic.
Motivation Traditional drug discovery and development are often time-consuming and high risk. Repurposing/repositioning of approved drugs offers a relatively low-cost and high-efficiency approach toward rapid development of efficacious treatments. The emergence of large-scale, heterogeneous biological networks has offered unprecedented opportunities for developing in silico drug repositioning approaches. However, capturing highly non-linear, heterogeneous network structures by most existing approaches for drug repositioning has been challenging. Results In this study, we developed a network-based deep-learning approach, termed deepDR, for in silico drug repurposing by integrating 10 networks: one drug–disease, one drug-side-effect, one drug–target and seven drug–drug networks. Specifically, deepDR learns high-level features of drugs from the heterogeneous networks by a multi-modal deep autoencoder. Then the learned low-dimensional representation of drugs together with clinically reported drug–disease pairs are encoded and decoded collectively via a variational autoencoder to infer candidates for approved drugs for which they were not originally approved. We found that deepDR revealed high performance [the area under receiver operating characteristic curve (AUROC) = 0.908], outperforming conventional network-based or machine learning-based approaches. Importantly, deepDR-predicted drug–disease associations were validated by the ClinicalTrials.gov database (AUROC = 0.826) and we showcased several novel deepDR-predicted approved drugs for Alzheimer’s disease (e.g. risperidone and aripiprazole) and Parkinson’s disease (e.g. methylphenidate and pergolide). Availability and implementation Source code and data can be downloaded from https://github.com/ChengF-Lab/deepDR Supplementary information Supplementary data are available online at Bioinformatics.
Target identification and drug repurposing could benefit from network-based, rational deep learning prediction, and explore the relationship between drugs and targets in the heterogeneous drug–gene–disease network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.