Although single-function camouflage under infrared/visible bands has made great advances, it is still difficult for camouflage materials to cope with the synergy detection spanning both visible and infrared spectra and adapt to complex and variable scenarios. Herein, a trilayer composite integrating thermal insulation, heat absorption, solar/electro-thermal conversions, and thermochromism is fabricated for visible and infrared dual camouflages by combining anisotropic MXene/reduced graphene oxide hybrid aerogel with the n-octadecane phase change material in its bottom and a thermochromic coating on its upper surface. Benefiting from the synergetic heat-transfer suppression derived from the thermal insulation of the porous aerogel layer and the heat absorption of the n-octadecane phase-change layer, the composite can serve as a cloak to hide the target signatures from the infrared images of its ambient surroundings during the day in the jungle and at night in all scenes and can assist the target in escaping visual surveillance by virtue of its green appearance. For desert scenarios, the composite can spontaneously increase its surface temperature via its solar-thermal energy conversion, merging infrared images of the targets into the high-temperature surroundings; meanwhile, it can vary the surface color from the original green to yellow, enabling the target to visually disappear from ambient sands and hills. This work provides a promising strategy for designing adaptive and adjustable integrated camouflage materials to counter multiband surveillance in complicated environments.
Although personal thermal management (PTM) materials for daily routine environments are widely investigated, the exploration of multifunctional PTM materials with excellent feasibility in complex and outdoor scenarios is still in its infancy. Herein, inspired by the temperature regulation effect of the atmosphere, a novel design for fabricating solar‐thermal gradient reduced graphene oxide (RGO) aerogel‐based bilayer phase change composite (GRGC) featuring “energy regulation” and “energy inverse compensation” is proposed for self‐adaptive PTM applications. By integrating the solar‐thermal energy conversion ability of RGO, the heat regulation of the aerogel/octadecane bilayer structure with the unique gradient RGO framework inside, and the latent‐heat compensation of octadecane, the bilayer GRGC can serve as an efficient PTM device to mitigate drastic temperature changes of human skin in harsh environments. This multifunctional PTM device can not only keep a warm skin surface microclimate in a frigid environment of −5 °C via the synergistic effect of the solar‐thermal conversion, the aerogel thermal insulation, and the phase‐change latent heat release, but also provide efficient thermal buffering to prevent hyperthermia in hot environments through its phase‐change behavior and its thermal insulation. This gradient and bilayer design opens a new avenue for fabricating self‐adaptive PTM devices for applications in harsh environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.