Comparing the clinical and radiographic outcomes in anterior cervical discectomy and fusion (ACDF) using a zero-profile anchored spacer (ROI-C) or a conventional cage-plate construct (CPC) for treating noncontiguous bilevel of cervical degenerative disc disease (CDDD).Overall, 46 patients with 2 noncontiguous segments of CDDD, treated with ACDF from January 2011 to October 2015, were included in this study. ROI-C was used in 22 patients (group A) and CPC in 24 patients (group B). The clinical and radiographic outcomes and complications were compared pre- and postoperatively. All patients were followed up for at least 24 months after surgery.No significant difference was found in fusion rate, cervical curvature, height of fused segment (FSDH), intraoperative blood loss, and Japanese Orthopaedic Association (JOA), and Neck Disability Index (NDI) scores between the 2 groups. Group A had a shorter operation time and significantly lower incidence of dysphagia (3 and 24 months postoperatively) than group B (P < .001 and P < .05, respectively). Moreover, group A had a higher loss of FSDH than group B, but with no difference between the 2 groups (P > .05). Two cages developed subsidence in group A (4.5%) and 2 adjacent levels developed degeneration in group B (2,8%).ACDF with ROI-C device was superior to CPC for noncontiguous bilevel of CDDD because it avoided postoperative dysphagia and required a shorter operation time. Moreover, the clinical outcomes were comparable. Prospective trials with larger samples and longer follow-up are required to confirm the results.
In Saccharomyces cerevisiae, the HAP transcriptional complex is involved in the fermentation-respiration shift. This complex is composed of four subunits. Three subunits are necessary for DNA-binding, whereas the Hap4p subunit, glucose-repressed, contains the transcriptional activation domain. Hap4p is the key regulator of the complex activity in response to carbon sources in S. cerevisiae. To date, no HAP4 homologue has been identified, except in Kluyveromyces lactis. Examination of these two HAP4 sequences led to the identification of two very short conserved peptides also identified in other yeasts. In the yeast Hansenula polymorpha, two possible HAP4 homologues have been found. Their deduced amino acid sequences are similar to the ScHap4p and KlHap4p proteins only in the N-terminal 16-amino-acid basic motif. Since molecular genetic tools exist and complete genome sequence is known for this yeast, we expressed one of these putative HpHap4 proteins in S. cerevisiae and showed that this protein is able to restore the growth defect of the S. cerevisiae hap4-deleted strain. A set of experiments was performed to confirm the functional homology of this new gene with ScHAP4. The discovery of a Hap4-regulatory protein in H. polymorpha with only the N-terminal conserved domain of the S. cerevisiae protein indicates that this domain may play a crucial role during evolution.
Exploring novel chemotherapeutic agents is a great challenge in cancer medicine. To that end, 2-substituted benzimidazole copper(II) complex, [Cu(BMA)Cl2]·(CH3OH) (1) [BMA = N,N'-bis(benzimidazol-2-yl-methyl)amine], was synthesized and its cytotoxicity was characterized. The interaction between complex 1 and calf thymus DNA was detected by spectroscopy methods. The binding constant (K b = 1.24 × 10(4 )M(-1)) and the apparent binding constant (K app = 6.67 × 10(6 )M(-1)) of 1 indicated its moderate DNA affinity. Complex 1 induced single strand breaks of pUC19 plasmid DNA in the presence of H2O2 through an oxidative pathway. Cytotoxicity studies proved that complex 1 could inhibit the proliferation of human cervical carcinoma cell line HeLa in both time- and dose-dependent manners. The results of nuclei staining by Hoechst 33342 and alkaline single-cell gel electrophoresis proved that complex 1 caused cellular DNA damage in HeLa cells. Furthermore, treatment of HeLa cells with 1 resulted in S-phase arrest, loss of mitochondrial potential, and up-regulation of caspase-3 and -9 in HeLa cells, suggesting that complex 1 was capable of inducing apoptosis in cancer cells through the intrinsic mitochondrial pathway.
NAD holds a key position in metabolism and cellular regulatory events as a major redox carrier and a signalling molecule. NAD biosynthesis pathways have been reconstructed and compared in seven yeast species with completely sequenced genomes, including Saccharomyces cerevisiae, Kluyveromyces lactis, Candida glabrata, Debaryomyces hansenii, Candida albicans, Yarrowia lipolytica and Schizosaccharomyces pombe. Both amino acid and nucleotide sequence similarity analysis in silico indicated that de novo NAD biosynthesis might not exist in K. lactis, C. glabrata and Schiz. pombe, while other species have the kynurenine pathway. It also showed that the NAD salvage pathway via nicotinic acid and nicotinic acid mononucleotide is conserved in all of these yeasts. Deletion of KlNPT1 (the gene for nicotinate phosphoribosyl-transferase) is lethal, which demonstrates that this salvage pathway, utilizing exogenous nicotinic acid, is the unique route to synthesize NAD in K. lactis. The results suggested that the basis of the variation of niacin requirements in yeasts lies in their different combinations of NAD biosynthesis pathways. The de novo pathway is absent but the salvage pathway is conserved in niacin-negative yeasts, while both pathways coexist in niacin-positive yeasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.