Grain-filling, an important trait that contributes greatly to grain weight, is regulated by quantitative trait loci and is associated with crop domestication syndrome. However, the genes and underlying molecular mechanisms controlling crop grain-filling remain elusive. Here we report the isolation and functional analysis of the rice GIF1 (GRAIN INCOMPLETE FILLING 1) gene that encodes a cell-wall invertase required for carbon partitioning during early grain-filling. The cultivated GIF1 gene shows a restricted expression pattern during grain-filling compared to the wild rice allele, probably a result of accumulated mutations in the gene's regulatory sequence through domestication. Fine mapping with introgression lines revealed that the wild rice GIF1 is responsible for grain weight reduction. Ectopic expression of the cultivated GIF1 gene with the 35S or rice Waxy promoter resulted in smaller grains, whereas overexpression of GIF1 driven by its native promoter increased grain production. These findings, together with the domestication signature that we identified by comparing nucleotide diversity of the GIF1 loci between cultivated and wild rice, strongly suggest that GIF1 is a potential domestication gene and that such a domestication-selected gene can be used for further crop improvement.
The demand for high quality rice represents a major issue in rice production. The primary components of rice grain quality include appearance, eating, cooking, physico-chemical, milling and nutritional qualities. Most of these traits are complex and controlled by quantitative trait loci (QTLs), so the genetic characterization of these traits is more difficult than that of traits controlled by a single gene. The detection and genetic identification of QTLs can provide insights into the genetic mechanisms underlying quality traits. Chromosome segment substitution lines (CSSLs) are effective tools used in mapping QTLs. In this study, we constructed 154 CSSLs from backcross progeny (BC(3)F(2)) derived from a cross between 'Koshihikari' (an Oryza sativa L. ssp. japonica variety) as the recurrent parent and 'Nona Bokra' (an O. sativa L. ssp. indica variety) as the donor parent. In this process, we carried out marker-assisted selection by using 102 cleaved amplified polymorphic sequence and simple sequence repeat markers covering most of the rice genome. Finally, this set of CSSLs was used to identify QTLs for rice quality traits. Ten QTLs for rice appearance quality traits were detected and eight QTLs concerned physico-chemical traits. These results supply the foundation for further genetic studies and breeding for the improvement of grain quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.