Acute-on-chronic liver failure (ACLF) is a severe, life-threatening complication, and new and efficient therapeutic strategies for liver failure are urgently needed. Mesenchymal stem cell (MSC) transfusions have been shown to reverse fulminant hepatic failure in mice and to improve liver function in patients with end-stage liver diseases. We assessed the safety and initial efficacy of umbilical cordderived MSC (UC-MSC) transfusions for ACLF patients associated with hepatitis B virus (HBV) infection. A total of 43 ACLF patients were enrolled for this open-labeled and controlled study; 24 patients were treated with UC-MSCs, and 19 patients were treated with saline as controls. UC-MSC therapy was given three times at 4-week intervals. The liver function, adverse events, and survival rates were evaluated during the 48-week or 72-week follow-up period. No significant side effects were observed during the trial. The UC-MSC transfusions significantly increased the survival rates in ACLF patients; reduced the model for end-stage liver disease scores; increased serum albumin, cholinesterase, and prothrombin activity; and increased platelet counts. Serum total bilirubin and alanine aminotransferase levels were significantly decreased after the UC-MSC transfusions. UC-MSC transfusions are safe in the clinic and may serve as a novel therapeutic approach for HBV-associated ACLF patients. STEM CELLS TRANSLATIONAL MEDICINE 2012;1:725-731
Secreted frizzled related protein 2 (Sfrp2) is known as an inhibitor for the Wnt signaling. In recent studies, Sfrp2 has been reported to inhibit the activity of Xenopus homolog of mammalian Tolloid-like 1 metalloproteinase. Bone morphogenic protein 1 (Bmp1)/Tolloidlike metalloproteinase plays a key role in the regulation of collagen biosynthesis and maturation after tissue injury. Here, we showed both endogenous Sfrp2 and Bmp1 protein expressions were up-regulated in rat heart after myocardial infarction (MI). We hypothesize that Sfrp2 could inhibit mammalian Bmp1 activity and, hence, the exogenous administration of Sfrp2 after MI would inhibit the deposition of mature collagen and improve heart function. Using recombinant proteins, we demonstrated that Sfrp2, but not Sfrp1 or Sfrp3, inhibited Bmp1 activity in vitro as measured by a fluorogenic peptide based procollagen C-proteinase activity assay. We also demonstrated that Sfrp2 at high concentration inhibited human and rat type I procollagen processing by Bmp1 in vitro. We further showed that exogenously added Sfrp2 inhibited type I procollagen maturation in primary cardiac fibroblasts. Two days after direct injection into the rat infarcted myocardium, Sfrp2 inhibited MI-induced type I collagen deposition. As early as 2 wk after injection, Sfrp2 significantly reduced left ventricular (LV) fibrosis as shown by trichrome staining. Four weeks after injection, Sfrp2 prevented the anterior wall thinning and significantly improved cardiac function as revealed by histological analysis and echocardiographic measurement. Our study demonstrates Sfrp2 at therapeutic doses can inhibit fibrosis and improve LV function at a later stage after MI.M yocardial infarction and postinfarction heart failure are the major cause of mortality and morbidity in the United States. Recently, stem-and progenitor-based cell therapy has shown promise in the treatment of myocardial infarction, yet the underlying mechanism remains elusive. We reported that intracardiac implantation of genetically modified mesenchymal stem cell overexpressing Akt (Akt-MSC) dramatically reduced infarct size and restored cardiac function in rodent hearts after coronary artery ligation (1). We postulated that the beneficial effects of Akt-MSC are paracrine in nature (2, 3) and identified Sfrp2 as a key factor released by Akt-MSC-mediating myocardial survival and repair (4).Sfrps are secreted proteins that structurally resemble the Wnt frizzled receptors and serve as modulators of Wnt signaling (5). Recent studies demonstrated that the Secreted Frizzled (Sizzled) protein (sfrp related protein in Xenopus and zebrafish) played an important role in dorsal-ventral patterning by stabilizing Chordin through the inhibition of the Tolloid-family metalloproteinase in Xenopus (Xolloid-related, Xlr) (6) and Zebrafish (Tolloid-like 1, Tll1) (7). Interestingly, Lee et al. (6) showed that recombinant mammalian Sfrp2 could also inhibit Chordin cleavage by inhibiting Xlr, a Xenopus homolog of mammalian Tolloid (mTLD)-like 1. The...
Purpose Early-stage hepatocellular carcinoma (E-HCC) is being diagnosed increasingly, and in one half of diagnosed patients, recurrence will develop. Thus, it is urgent to identify recurrence-related markers. We investigated the effectiveness of CpG methylation in predicting recurrence for patients with E-HCCs. Patients and Methods In total, 576 patients with E-HCC from four independent centers were sorted by three phases. In the discovery phase, 66 tumor samples were analyzed using the Illumina Methylation 450k Beadchip. Two algorithms, Least Absolute Shrinkage and Selector Operation and Support Vector Machine-Recursive Feature Elimination, were used to select significant CpGs. In the training phase, penalized Cox regression was used to further narrow CpGs into 140 samples. In the validation phase, candidate CpGs were validated using an internal cohort (n = 141) and two external cohorts (n = 191 and n =104). Results After combining the 46 CpGs selected by the Least Absolute Shrinkage and Selector Operation and the Support Vector Machine-Recursive Feature Elimination algorithms, three CpGs corresponding to SCAN domain containing 3, Src homology 3-domain growth factor receptor-bound 2-like interacting protein 1, and peptidase inhibitor 3 were highlighted as candidate predictors in the training phase. On the basis of the three CpGs, a methylation signature for E-HCC (MSEH) was developed to classify patients into high- and low-risk recurrence groups in the training cohort ( P < .001). The performance of MSEH was validated in the internal cohort ( P < .001) and in the two external cohorts ( P < .001; P = .002). Furthermore, a nomogram comprising MSEH, tumor differentiation, cirrhosis, hepatitis B virus surface antigen, and antivirus therapy was generated to predict the 5-year recurrence-free survival in the training cohort, and it performed well in the three validation cohorts (concordance index: 0.725, 0.697, and 0.693, respectively). Conclusion MSEH, a three-CpG-based signature, is useful in predicting recurrence for patients with E-HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.