Ethylene plays critical roles in plant development and biotic stress response, but the mechanism of ethylene in host antiviral response remains unclear. Here, we report that Rice dwarf virus (RDV) triggers ethylene production by stimulating the activity of S-adenosyl-L-methionine synthetase (SAMS), a key component of the ethylene synthesis pathway, resulting in elevated susceptibility to RDV. RDV-encoded Pns11 protein specifically interacted with OsSAMS1 to enhance its enzymatic activity, leading to higher ethylene levels in both RDV-infected and Pns11-overexpressing rice. Consistent with a counter-defense role for ethylene, Pns11-overexpressing rice, as well as those overexpressing OsSAMS1, were substantially more susceptible to RDV infection, and a similar effect was observed in rice plants treated with an ethylene precursor. Conversely, OsSAMS1-knockout mutants, as well as an osein2 mutant defective in ethylene signaling, resisted RDV infection more robustly. Our findings uncover a novel mechanism which RDV manipulates ethylene biosynthesis in the host plants to achieve efficient infection.
RNAi is a major antiviral defense response in plant and animal model systems. RNA-dependent RNA polymerase 6 (RDR6) is an essential component of RNAi, which plays an important role in the resistance against viruses in the model plants. We found previously that rice RDR6 (OsRDR6) functioned in the defense against Rice stripe virus (RSV), and Rice Dwarf Phytoreovirus (RDV) infection resulted in down-regulation of expression of RDR6. Here we report our new findings on the function of OsRDR6 against RDV. Our result showed that down-regulation of OsRDR6 through the antisense (OsRDR6AS) strategy increased rice susceptibility to RDV infection while over-expression of OsRDR6 had no effect on RDV infection. The accumulation of RDV vsiRNAs was reduced in the OsRDR6AS plants. In the OsRDR6 over-expressed plants, the levels of OsRDR6 RNA transcript and protein were much higher than that in the control plants. Interestingly, the accumulation level of OsRDR6 protein became undetectable after RDV infection. This finding indicated that the translation and/or stability of OsRDR6 protein were negatively impacted upon RDV infection. This new finding provides a new light on the function of RDR6 in plant defense response and the cross-talking between factors encoded by host plant and double-stranded RNA viruses.
Three carbazole-containing methacrylic monomers, 2-(N-carbazolyl)ethyl methacrylate(CzEMA), 6-(N-carbazolyl)hexyl methacrylate(CzHMA), and 11-(N-carbazolyl)undecyl methacrylate (CzUMA), and their saturated model compounds, 2-(Ncarbazolyl)ethyl isobutyrate, 6-(N-carbazolyl)hexyl isobutyrate, and 11-(N-carbazolyl)-undecyl isobutyrate, were synthesized and polymerized. UV absorption spectra showed that there was either negligible or no interaction between the carbon-carbon double bond of the methacrylic group and the carbazolyl chromophore moiety in the ground state for these monomers. Fluorescence spectra of the monomers, their model compounds, and the polymers were recorded in the solvents with different polarities. CzEMA exhibited the fluorescence structural self-quenching effect (SSQE), but CzHMA and CzUMA did not. In addition, the SSQE of CzEMA depended strongly on the polarity of the solvents. That is, the stronger the polarity of a solvent was, the more obvious the SSQE was. Therefore, the SSQE of CzEMA mainly was caused by the intramolecular charge-transfer interaction between the excited electron-donating carbazolyl chromophore moiety and the electron-accepting carbon-carbon double bond of the methacrylic group. This was confirmed by the fluorescence-decay curves and the fluorescence lifetimes of the monomers, their model compounds, and the polymers. The monomers, their model compounds, and the polymers initiated the photopolymerization of methyl methacrylate (MMA) upon UV irradiation. CzEMA showed greater initiation ability than the other two monomers and their model compounds; this was ascribed to the photoinduced intramolecular charge-transfer interaction. The higher initiation efficiency of the homopolymers compared to that of the copolymers with MMA was interpreted as the result of singlet energy migration of the excited carbazolyl chromophores along the polymer chains.
Although peroxide and leachable metal-induced chemical modifications are among the most important quality attributes in bioprocess development, there is no mainstream characterization method covering all common modifications theoretically possible on therapeutic proteins that also gives consistent results quickly. Here, we describe a method for rapid and consistent global characterization of leachable metals-or peroxide-stressed immunoglobulin (Ig) G1 monoclonal antibodies (mAbs). Using two independent protease digestions, data-independent acquisition and data-dependent acquisition liquid chromatography high-resolution mass spectrometry, we monitored 55 potential chemical modifications on trastuzumab, a humanized IgG1 mAb. Processing templates including all observed peptides were developed on Skyline to consistently monitor all modifications throughout the stress conditions for both enzymatic digestions. The Global Characterization Data Processing Site, a universal automated data processing application, was created to batch process data, plot modification trends for peptides, generate sortable and downloadable modification tables, and produce Jmol code for threedimensional structural models of the analyzed protein. In total, 53 sites on the mAb were found to be modified. Oxidation rates generally increased with the peroxide concentration, while leachable metals alone resulted in lower rates of modifications but more oxidative degradants. Multiple chemical modifications were found on IgG1 surfaces known to interact with FcɣRIII, complement protein C1q, and FcRn, potentially affecting activity. The combination of Skyline templates and the Global Characterization Data Processing Site results in a universally applicable assay allowing users to batch process numerous modifications. Applying this new method to stability studies will promote a broader and deeper understanding of stress modifications on therapeutic proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.