Background: Fusion transcripts are formed by either fusion genes (DNA level) or trans-splicing events (RNA level). They have been recognized as a promising tool for diagnosing, subtyping and treating cancers. RNA-seq has become a precise and efficient standard for genome-wide screening of such aberration events. Many fusion transcript detection algorithms have been developed for paired-end RNA-seq data but their performance has not been comprehensively evaluated to guide practitioners. In this paper, we evaluated 15 popular algorithms by their precision and recall trade-off, accuracy of supporting reads and computational cost. We further combine top-performing methods for improved ensemble detection.Results: Fifteen fusion transcript detection tools were compared using three synthetic data sets under different coverage, read length, insert size and background noise, and three real data sets with selected experimental validations. No single method dominantly performed the best but SOAPfuse generally performed well, followed by FusionCatcher and JAFFA. We further demonstrated the potential of a meta-caller algorithm by combining top performing methods to re-prioritize candidate fusion transcripts with high confidence that can be followed by experimental validation.Conclusion: Our result provides insightful recommendations when applying individual tool or combining top performers to identify fusion transcript candidates.
Nonlinear optical dendrons with alternating terminal groups of the stearyl group (C18) and chromophore were prepared through a convergent approach. These chromophore-containing dendrons were used as the intercalating agents for montmorillonite via an ion-exchange process. An orderly exfoliated morphology is obtained by mixing the dendritic structure intercalated layered silicates with a polyimide. As a result, optical nonlinearity, i.e. the Pockels effect was observed for these nanocomposites without resorting to the poling process. EO coefficients of 9-22 pm V À1 were achieved despite that relatively low NLO densities were present in the nanocomposites, particularly for the samples comprising the dendrons with alternating moieties. In addition, the hedging effects of the stearyl group on the selfalignment behavior, electro-optical (EO) coefficient and temporal stability of the dendron-intercalated montmorillonite/polyimide nanocomposites were also investigated.
This paper proposes a new multiple attribute decision making method based on the proposed interval-valued intuitionistic fuzzy weighted geometric averaging (IVIFWGA) operator, the proposed interval-valued intuitionistic fuzzy ordered weighted geometric averaging (IVIFOWGA) operator and the proposed interval-valued intuitionistic fuzzy hybrid geometric averaging (IVIFHGA) operator of interval-valued intuitionistic fuzzy values. The proposed multiple attribute decision making method can overcome the drawbacks of the existing methods.
Keywords-fuzzy numbers; interval-valued intuitionistic fuzzy geometric averaging operators; interval-valued intuitionistic fuzzy values; multiple attribute decision making
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.