Background and Aims-Epidemiologic studies have linked nutritional folate deficiency to an increased risk of cancer, but recent trials suggest that folate supplementation does not protect against tumor formation. Our aim was to analyze the genetic and epigenetic consequences of folate deficiency and to investigate whether impairment of the uracil base excision repair pathway can enhance its effects.
Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely thought to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate deficiency in cognitive dysfunction, we fed rats folate-deficient diets (0 mg FA/kg diet) with or without supplemental L-methionine for 10 wk, followed by cognitive testing and tissue collection for hematological and biochemical analysis. Folate deficiency with normal methionine impaired spatial memory and learning; however, this impairment was prevented when the folate-deficient diet was supplemented with methionine. Under conditions of folate deficiency, brain membrane content of the methylated phospholipid phosphatidylcholine was significantly depleted, which was reversed with supplemental methionine. In contrast, neither elevated plasma homocysteine nor brain S-adenosylmethionine and S-adenosylhomocysteine concentrations predicted cognitive impairment and its prevention by methionine. The correspondence of cognitive outcomes to changes in brain membrane phosphatidylcholine content suggests that altered phosphatidylcholine and possibly choline metabolism might contribute to the manifestation of folate deficiency-related cognitive dysfunction.
Increased oxidative stress has been associated with work at high altitude; however, it is not known whether oxidative stress is a significant problem at moderate altitudes. The oxidative stress indicators, breath pentane (BP), 8-hydroxydeoxyguanosine (8-OHdG), oxygen radical absorption capacity (ORAC), 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), and lipid peroxides (LPO) were measured in breath, blood and urine samples of U.S. Marines engaged in moderate altitude ( approximately 3000 m) cold weather field training. The test subjects were divided into a placebo and four antioxidant supplement groups (n = 15/group) and received the following supplements for 28 d: 1) vitamin E, 440 alpha-tocopherol equivalents (alpha-TE); 2) vitamin A, 2000 retinol equivalents (RE) of beta-carotene; 3) vitamin C, 500 mg ascorbic acid; 4) a mixture of 440 alpha-TE, 2000 RE of beta-carotene, 500 mg ascorbic acid, 100 microg selenium and 30 mg zinc daily. Strenuous work ( approximately 23 MJ/d) in cold weather at moderate altitude was accompanied by increases in several indicators of oxidative stress that were not effectively controlled by conventional antioxidant supplements. The group receiving the antioxidant mixture exhibited lower BP (P < 0. 05) compared with those receiving single antioxidant supplements; however, not all markers of oxidative stress responded like BP. Because these markers did not respond in the same manner, it is important to include markers from more than one source to assess the effect of supplemental dietary antioxidants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.