Background/Aims:Phytoestrogens are known to prevent tumor progression by inhibiting proliferation and inducing apoptosis in cancer cells. Formononetin is one of the main components of red clover plants, and is considered as a typical phytoestrogen. This study investigates formononetin induction of apoptosis of human osteosarcoma cell line U2OS by regulating Bcl-2 and Bax expression in vitro and in vivo. Methods: U2OS cells were treated with different concentrations of formononetin and the proliferation of the cells was measured using an MTT assay. Cell apoptosis was examined by flow cytometry. The levels of miR-375, Bax and Bcl-2 protein expression in treated cells were determined by Western blot and RT-PCR. The antitumor activity of formononetin was also evaluated in vivo in nude mice bearing orthotopic tumor implants. Results: High concentrations of formononetin significantly suppress the proliferation of U2OS cells and induce cell apoptosis. Moreover, compared to control group the expression of Bcl-2 and miR-375 decreases with formononetin in the U2OS cells, while Bax increases. Conclusion: Formononetin has inhibitory effects on the proliferation of U2SO cells, both in vitro and in vivo. This antitumor effect is directly correlated with formononetin concentration.
BackgroundWhile hypertension is negatively associated with coronary artery spasm (CAS), scarce data are available on diabetes mellitus in relation to CAS. In addition, outcome prediction in patients with CAS is challenging due to the lack of appropriate biomarkers. Therefore, we sought to identify the roles that gender, high-sensitivity C-reactive protein (hs-CRP), diabetes mellitus and hypertension play in CAS development and prognosis.Methodology/Prinicpal FindingsPatients (350 women and 547 men) undergoing diagnostic coronary angiography with or without proven CAS but without obstructive stenosis were evaluated at long-term follow-up (median 102 months). Diabetic women and diabetic men with low hs-CRP levels had a low and high risk of CAS (odds ratio [OR]: 0.16, 95% confidence interval [CI]: 0.01–1.88 and OR: 5.02, 95% CI: 1.03–24.54, respectively). The ORs of CAS in both women and men with the highest hs-CRP tertile (>3 mg/L) reduced from 4.41 to 1.45 and 2.98 to 1.52, respectively, if they had diabetes mellitus, and from 9.68 to 2.43 and 2.60 to 1.75, respectively, if they had hypertension. Hypertension had a more negative effect on CAS development in diabetic than non-diabetic women, which was not observed in men. The highest hs-CRP tertile was an independent predictor of adverse outcomes. Patients with the highest hs-CRP tertile had more coronary events than patients with the lowest hs-CRP tertitle (p = 0.021, log-rank test).ConclusionsDiabetes mellitus contributes to CAS development in men with low hs-CRP levels, but not in women. There are negative effects of diabetes mellitus and hypertension on CAS development in patients with high hs-CRP levels and especially in women. Elevated hs-CRP level independently predicts adverse outcomes.
Huangkui capsule (HKC), a Chinese modern patent medicine extracted from Abelmoschus manihot (L.) medic, has been widely applied to clinical therapy in the early diabetic nephropathy (DN) patients. However, it remains elusive whether HKC can ameliorate the inchoate glomerular injuries in hyperglycemia. Recently the activation of phosphatidylinositol-3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of rapamycin (mTOR) signaling and its downstream regulator, 70-kDa ribosomal protein S6 kinase (p70S6K), play important roles in the early glomerular pathological changes of DN including glomerular hypertrophy, glomerular basement membrane (GBM) thickening and mild mesangial expansion. This study thereby aimed to clarify therapeutic effects of HKC during the initial phase of DN and its underlying mechanisms. Fifteen rats were randomly divided into 3 groups: the normal group, the model group and the HKC group. The early DN model rats were induced by unilateral nephrectomy combined with intraperitoneal injection of streptozotocin, and administered with either HKC suspension or vehicle after modeling and for a period of 4 weeks. Changes in the incipient glomerular lesions-related parameters in urine and blood were analyzed. Kidneys were isolated for histomorphometry, immunohistochemistry, immunofluorescence and Western blotting (WB) at sacrifice. In vitro, murine mesangial cells (MCs) were used to investigate inhibitory actions of hyperoside (HYP), a bioactive component of HKC, on cellular hypertrophy-associated signaling pathway by WB, compared with rapamycin (RAP). For the early DN model rats, HKC ameliorated micro-urinary albumin, body weight and serum albumin, but had no significant effects on renal function and liver enzymes; HKC improved renal shape, kidney weight and kidney hypertrophy index; HKC attenuated glomerular hypertrophy, GBM thickening and mild mesangial expansion; HKC inhibited the phosphorylation of Akt, mTOR and p70S6K, and the protein over-expression of transforming growth factor-β1 in kidneys. In vitro, the phosphorylation of PI3K, Akt, mTOR and p70S6K in MCs induced by high-glucose was abrogated by treatment of HYP or RAP. On the whole, this study further demonstrated HKC safely and efficiently alleviates the early glomerular pathological changes of DN, likely by inhibiting Akt/mTOR/p70S6K signaling activity in vivo and in vitro, and provided the first evidence that HKC directly contributes to the prevention of the early DN.
Senescence-associated diseases have severely diminished the quality of life and health of patients. However, a sensitive assay of these diseases remains limited due to a lack of straightforward methods. Considering that senescence-associated β-galactosidase (SA-β-Gal) is overexpressed in senescent cells, the detection of SA-β-Gal in senescent cells and tissues might be a feasible strategy for the early diagnosis of SA diseases. In this study, a β-galactosidase-activatable nanoprobe BOD-L-βGal-NPs was developed for the imaging of senescent cells and vasculature in atherosclerotic mice via real-time monitoring of β-Gal. BOD-L-βGal-NPs was fabricated by encapsulating a newly designed NIR ratiometric probe BOD-L-βGal within a poly(lactic-co-glycolic) acid (PLGA) core. Nanoprobe BOD-L-βGal-NPs showed good accumulation in arteries, thus successfully visualizing senescent cells and vasculature in atherosclerotic mice by tail vein injection. Our findings indicated that nanoprobe BOD-L-βGal-NPs holds great potential for the early diagnosis and therapy of atherosclerosis and other aging-associated diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.