Empirical-likelihood-based inference for the parameters in a partially linear single-index model with randomly censored data is investigated. We introduce an estimated empirical likelihood for the parameters using a synthetic data approach and show that its limiting distribution is a mixture of central chi-squared distribution. To attack this difficulty we propose an adjusted empirical likelihood to achieve the standard χ 2 -limit. Furthermore, since the index is of norm 1, we use this constraint to reduce the dimension of parameters, which increases the accuracy of the confidence regions. A simulation study is carried out to compare its finite-sample properties with the existing method. An application to a real data set is illustrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.