While the aging process is central to the pathogenesis of age-dependent diseases, it is poorly understood at the molecular level. We identified a mouse mutant with accelerated aging in the retina as well as pathologies observed in age-dependent retinal diseases, suggesting that the responsible gene regulates retinal aging, and its impairment results in age-dependent disease. We determined that a mutation in the transmembrane 135 (Tmem135) is responsible for these phenotypes. We observed localization of TMEM135 on mitochondria, and imbalance of mitochondrial fission and fusion in mutant Tmem135 as well as Tmem135 overexpressing cells, indicating that TMEM135 is involved in the regulation of mitochondrial dynamics. Additionally, mutant retina showed higher sensitivity to oxidative stress. These results suggest that the regulation of mitochondrial dynamics through TMEM135 is critical for protection from environmental stress and controlling the progression of retinal aging. Our study identified TMEM135 as a critical link between aging and age-dependent diseases.DOI: http://dx.doi.org/10.7554/eLife.19264.001
Understanding the normal aging process will help us determine the mechanisms of how age-related diseases are caused and progress. A/J inbred mice have been shown to exhibit accelerated aging phenotypes in the retina including increased inflammation and photoreceptor cell degeneration, which resemble human aging symptoms. C57BL/6J (B6) inbred mice are less susceptible for these abnormalities, indicating the existence of genetic factor(s) that affect their severity. In this study, we determined that another age-dependent phenotype, ectopic synapse formation, is also accelerated in the A/J retina compared to the B6 retina. Through genetic mapping utilizing recombinant inbred strains, we identified quantitative trait loci (QTLs) on chromosome 7 and 19 that contribute to abnormal retinal synapses as well as other age-dependent phenotypes. Using consomic single chromosome substitution lines where a single chromosome is from A/J and the rest of the genome is B6, we investigated the individual effect of each QTL on retinal aging phenotypes. We observed that both QTLs independently contribute to abnormal retinal synapses, reduction in the number of cone cells, and an up-regulation of retinal stress marker, glial fibrillary acidic protein (GFAP). Mice with a single chromosome substitution on chromosome 19 also exhibited an increase in inflammatory cells, which is characteristic of aging and age-related macular degeneration. Thus, we identified QTLs that are independently capable of affecting the severity and progression of age-dependent retinal abnormalities in mice.
Mitochondria are dynamic organelles that undergo fission and fusion. While they are essential for cellular metabolism, the effect of dysregulated mitochondrial dynamics on cellular metabolism is not fully understood. We previously found that transmembrane protein 135 ( Tmem135) plays a role in the regulation of mitochondrial dynamics in mice. Mice homozygous for a Tmem135 mutation ( Tmem135FUN025/FUN025) display accelerated aging and age-related disease pathologies in the retina including the retinal pigment epithelium (RPE). We also generated a transgenic mouse line globally overexpressing the Tmem135 gene ( Tmem135 TG). In several tissues and cells that we studied such as the retina, heart, and fibroblast cells, we observed that the Tmem135 mutation causes elongated mitochondria, while overexpression of Tmem135 results in fragmented mitochondria. To investigate how abnormal mitochondrial dynamics affect metabolic signatures of tissues and cells, we identified metabolic changes in primary RPE cell cultures as well as heart, cerebellum, and hippocampus isolated from Tmem135FUN025/FUN025 mice (fusion > fission) and Tmem135 TG mice (fusion < fission) using nuclear magnetic resonance spectroscopy. Metabolomics analysis revealed a tissue-dependent response to Tmem135 alterations, whereby significant metabolic changes were observed in the heart of both Tmem135 mutant and TG mice as compared to wild-type, while negligible effects were observed in the cerebellum and hippocampus. We also observed changes in Tmem135FUN025/FUN025 and Tmem135 TG RPE cells associated with osmosis and glucose and phospholipid metabolism. We observed depletion of NAD+ in both Tmem135FUN025/FUN025 and Tmem135 TG RPE cells, indicating that imbalance in mitochondrial dynamics to both directions lowers the cellular NAD+ level. Metabolic changes identified in this study might be associated with imbalanced mitochondrial dynamics in heart tissue and RPE cells which can likely lead to functional abnormalities. Impact statement Mitochondria are dynamic organelles undergoing fission and fusion. Proper regulation of this process is important for healthy aging process, as aberrant mitochondrial dynamics are associated with several age-related diseases/pathologies. However, it is not well understood how imbalanced mitochondrial dynamics may lead to those diseases and pathologies. Here, we aimed to determine metabolic alterations in tissues and cells from mouse models with over-fused (fusion > fission) and over-fragmented (fusion < fission) mitochondria that display age-related disease pathologies. Our results indicated tissue-dependent sensitivity to these mitochondrial changes, and metabolic pathways likely affected by aberrant mitochondrial dynamics. This study provides new insights into how dysregulated mitochondrial dynamics could lead to functional abnormalities of tissues and cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.