An expressed sequence tag (EST) analysis approach was undertaken to identify major genes involved in cold acclimation of Rhododendron, a broad-leaf, woody evergreen species. Two cDNA libraries were constructed, one from winter-collected (cold-acclimated, CA; leaf freezing tolerance -53 degrees C) leaves, and the other from summer-collected (non-acclimated, NA; leaf freezing tolerance -7 degrees C) leaves of field-grown Rhododendron catawbiense plants. A total of 862 5'-end high-quality ESTs were generated by sequencing cDNA clones from the two libraries (423 from CA and 439 from NA library). Only about 6.3% of assembled unique transcripts were shared between the libraries, suggesting remarkable differences in gene expression between CA and NA leaves. Analysis of the relative frequency at which specific cDNAs were picked from each library indicated that four genes or gene families were highly abundant in the CA library including early light-induced proteins (ELIP), dehydrins/late embryogenesis abundant proteins (LEA), cytochrome P450, and beta-amylase. Similarly, seven genes or gene families were highly abundant in the NA library and included chlorophyll a/b-binding protein, NADH dehydrogenase subunit I, plastidic aldolase, and serine:glyoxylate aminotransferase, among others. Northern blot analyses for seven selected abundant genes confirmed their preferential expression in either CA or NA leaf tissues. Our results suggest that osmotic regulation, desiccation tolerance, photoinhibition tolerance, and photosynthesis adjustment are some of the key components of cold adaptation in Rhododendron.
In plants, Late Embryogenesis Abundant (LEA) proteins typically accumulate in response to low water availability conditions imposed during development or by the environment. Analogous proteins in other organisms are induced when exposed to stress conditions. Most of this diverse set of proteins can be grouped according to properties such as high hydrophilicity and high content of glycine or other small amino acids in what we have termed hydrophilins. Previously, we showed that hydrophilins protect enzyme activities in vitro from low water availability effects. Here, we demonstrate that hydrophilins can also protect enzyme activities from the adverse effects induced by freeze-thaw cycles in vitro. We monitored conformational changes induced by freeze-thaw on the enzyme lactate dehydrogenase (LDH) using the fluorophore 1-anilinonaphthalene-8-sulfonate (ANS). Hydrophilin addition prevents enzyme inactivation and this effect is reflected in changes in the ANS-fluorescence levels determined for LDH. We further show that for selected plant hydrophilins, removal of certain conserved domains affects their protecting capabilities. Thus, we propose that hydrophilins, and in particular specific protein domains, have a role in protecting cell components from the adverse effects caused by low water availability such as those present during freezing conditions by preventing deleterious changes in protein secondary and tertiary structure.
With a long-term goal of constructing a linkage map of Rhododendron enriched with gene-specific markers, we utilized Rhododendron catawbiense ESTs for the development of high-efficiency (in terms of generating polymorphism frequency) PCR-based markers. Using the gene-sequence alignment between Rhododendron ESTs and the genomic sequences of Arabidopsis homologs, we developed 'intron-flanking' EST-PCR-based primers that would anneal in conserved exon regions and amplify across the more highly diverged introns. These primers resulted in increased efficiency (61% vs. 13%; 4.7-fold) of polymorphism-detection compared with conventional EST-PCR methods, supporting the assumption that intron regions are more diverged than exons. Significantly, this study demonstrates that Arabidopsis genome database can be useful in developing gene-specific PCR-based markers for other non-model plant species for which the EST data are available but genomic sequences are not. The comparative analysis of intron sizes between Rhododendron and Arabidopsis (made possible in this study by aligning of Rhododendron ESTs with Arabidopsis genomic sequences and the sequencing of Rhododendron genomic PCR products) provides the first insight into the gene structure of Rhododendron.
Our laboratory has been working toward increasing our understanding of the genetic control of cold hardiness in blueberry (Vaccinium section Cyanococcus) to ultimately use this information to develop more cold hardy cultivars for the industry. Here, we report using cDNA microarrays to monitor changes in gene expression at multiple times during cold acclimation under field and cold room conditions. Microarrays contained over 2,500 cDNA inserts, approximately half of which had been picked and single-pass sequenced from each of two cDNA libraries that were constructed from cold acclimated floral buds and non-acclimated floral buds of the fairly cold hardy cv. Bluecrop (Vaccinium corymbosum L.). Two biological samples were examined at each time point. Microarray data were analyzed statistically using t tests, ANOVA, clustering algorithms, and online analytical processing (OLAP). Interestingly, more transcripts were found to be upregulated under cold room conditions than under field conditions. Many of the genes induced only under cold room conditions could be divided into three major types: (1) genes associated with stress tolerance; (2) those that encode glycolytic and TCA cycle enzymes, and (3) those associated with protein synthesis machinery. A few of the genes induced only under field conditions appear to be related to light stress. Possible explanations for these differences are discussed in physiological context. Although many similarities exist in how plants respond during cold acclimation in the cold room and in the field environment, there are major differences suggesting caution should be taken in interpreting results based only on artificial, cold room conditions.
We have previously analysed expressed sequence tags (ESTs) from non-acclimated (NA) and cold-acclimated (CA) Rhododendron leaves, and identified highly abundant complementary DNAs (cDNAs) possibly involved in cold acclimation. A potentially significant, but relatively unexplored, application of these EST data sets is the study of moderately abundant cDNAs, such as those picked only 1-3 times from each Rhododendron EST library containing ∼ ∼ ∼ ∼ 430 ESTs. Using statistical tests and Northern blots, we established that the probability of differential expression of moderately abundant cDNAs based on the EST data is, indeed, a reasonably accurate predictor of their 'true' upregulation or downregulation as 11 out of 13 cDNAs (85%) studied fit this criterion. The analyses also revealed four aspects of cold acclimation in Rhododendron leaf tissues. Firstly, the concomitant upregulation of long-chain acyl-coenzyme A (acyl-CoA) synthetase, CTP:cholinephosphate cytidylyltransferase and delta-12 fatty acid desaturase in CA leaf tissues suggests that phospholipid biosynthesis and desaturation are important components of cold hardening in Rhododendron . Secondly, upregulation of plastidic nicotinamide adenine dinucleotide phosphatemalic enzyme (NADP-ME) in CA tissues suggests that malate is an important source of acetyl-CoA used for fatty acid biosynthesis during cold acclimation. Thirdly, downregulation of plasma membrane intrinsic protein (PIP)2-1 aquaporin and upregulation of gated outward rectifying K + + + + channel (GORK) in CA tissues may be associated with the protection of overwintering leaves from freeze-induced cellular dehydration. Fourthly, upregulation of coumarate 3-hydroxylase may be associated with cell wall thickening in CA tissues. Physiological implications of these results, which reveal potentially novel regulations of cold acclimation in overwintering woody evergreens, are discussed. This work highlights the importance of also investigating low/ moderately abundant ESTs (in addition to highly abundant ones) in genomic studies, in that it offers an effective strategy for identifying stress-related genes, especially when large-scale cDNA sequencing/microarray studies are not possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.