Metallography is the study of the structure of metals and alloys. Metallographic analysis can be regarded as a detection tool to assist in identifying a metal or alloy, to evaluate whether an alloy is processed correctly, to inspect multiple phases within a material, to locate and characterize imperfections such as voids or impurities, or to find the damaged areas of metallographic images. However, the defect detection of metallography is evaluated by human experts, and its automatic identification is still a challenge in almost every real solution. Deep learning has been applied to different problems in computer vision since the proposal of AlexNet in 2012. In this study, we propose a novel convolutional neural network architecture for metallographic analysis based on a modified residual neural network (ResNet). Multi-scale ResNet (M-ResNet), the modified method, improves efficiency by utilizing multi-scale operations for the accurate detection of objects of various sizes, especially small objects. The experimental results show that the proposed method yields an accuracy of 85.7% (mAP) in recognition performance, which is higher than existing methods. As a consequence, we propose a novel system for automatic defect detection as an application for metallographic analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.