Knowledge of the current state of economies, how they respond to COVID-19 mitigations and indicators, and what the future might hold for them is important. We use recently-developed generalised network autoregressive (GNAR) models, using tradedetermined networks, to model and forecast the Purchasing Managers' Indices for a number of countries. We use networks that link countries where the links themselves, or their weights, are determined by the degree of export trade between the countries. We extend these models to include node-specific time series exogenous variables (GNARX models), using this to incorporate COVID-19 mitigation stringency indices and COVID-19 death rates into our analysis. The highly parsimonious GNAR models considerably outperform vector autoregressive models in terms of mean-squared forecasting error and our GNARX models themselves outperform GNAR ones. Further mixed frequency modelling predicts the extent to which that the UK economy will be affected by harsher, weaker or no interventions.
Knowledge of the current state of economies, how they respond to COVID-19 mitigations and indicators, and what the future might hold for them is important. We use recently developed generalised network autoregressive (GNAR) models, using trade-determined networks, to model and forecast the Purchasing Managers' Indices for a number of countries. We use networks that link countries where the links themselves, or their weights, are determined by the degree of export trade between the countries. We extend these models to include node-specific time series exogenous variables (GNARX models), using this to incorporate COVID-19 mitigation stringency indices and COVID-19 death rates into our analysis. The highly parsimonious GNAR models considerably outperform vector autoregressive models in terms of mean-squared forecasting error and our GNARX models themselves outperform [Read before The Royal Statistical Society at the first meeting on 'Statistical Aspects of the Covid-19 Pandemic' held at the
Knowledge of the current state of economies, how they respond to COVID-19 mitigations and indicators, and what the future might hold for them is important. We use recently developed generalised network autoregressive (GNAR) models, using trade-determined networks, to model and forecast the Purchasing Managers' Indices for a number of countries. We use networks that link countries where the links themselves, or their weights, are determined by the degree of export trade between the countries. We extend these models to include node-specific time series exogenous variables (GNARX models), using this to incorporate COVID-19 mitigation stringency indices and COVID-19 death rates into our analysis. The highly parsimonious GNAR models considerably outperform vector autoregressive models in terms of mean-squared forecasting error and our GNARX models themselves outperform [Read before The Royal Statistical Society at the first meeting on 'Statistical Aspects of the Covid-19 Pandemic' held at the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.