Selective, tissue-specific gene expression is facilitated by the epigenetic modification H3K27me3 (trimethylation of lysine 27 on histone H3) in plants and animals. Much remains to be learned about how H3K27me3-enriched chromatin states are constructed and maintained. Here, we identify a genetic interaction in between the chromodomain helicase DNA binding chromatin remodeler PICKLE (PKL), which promotes H3K27me3 enrichment, and the SWR1-family remodeler PHOTOPERIOD INDEPENDENT EARLY FLOWERING1 (PIE1), which incorporates the histone variant H2A.Z. Chromatin immunoprecipitation-sequencing and RNA-sequencing reveal that, , and the H3K27 methyltransferase CURLY LEAF act in a common gene expression pathway and are required for H3K27me3 levels genome-wide. Additionally, H3K27me3-enriched genes are largely a subset of H2A.Z-enriched genes, further supporting the functional linkage between these marks. We also found that recombinant PKL acts as a prenucleosome maturation factor, indicating that it promotes retention of H3K27me3. These data support the existence of an epigenetic pathway in which PIE1 promotes H2A.Z, which in turn promotes H3K27me3 deposition. After deposition, PKL promotes retention of H3K27me3 after DNA replication and/or transcription. Our analyses thus reveal roles for H2A.Z and ATP-dependent remodelers in construction and maintenance of H3K27me3-enriched chromatin in plants.
MicroRNAs (miRNAs) are small noncoding RNAs that function as master regulators of posttranscriptional gene expression with each miRNA negatively regulating hundreds of genes. Lysophosphatidic acid (LPA) is a mitogenic lipid present within the ovarian tumor microenvironment and induces LPA receptor activation and intracellular signaling cascades like ERK/MAPK, leading to enhanced cellular proliferation. Here, we show that in SKOV-3 and OVCAR-3 cells, LPA stimulation at concentrations ranging from 1 nmol/L to 20 mmol/L for 30 to 60 minutes increases miR-30c-2 Ã , and this effect is mediated through a combination of receptors because knock down of multiple LPA receptors is required for inhibition. The epidermal growth factor and platelet-derived growth factor also increase miR-30c-2 Ã transcript expression, suggesting a broader responsive role for miR-30c-2 Ã . Thus, we investigated the functional role of miR-30c-2 Ã through ectopic expression of synthetic miRNA precursors of mature miRNA or antagomir transfection and observed that microRNA-30c-2 Ã reduces, and the antagomir enhances, cell proliferation and viability in OVCAR-3, cisplatin-insensitive SKOV-3 and chemoresistant HeyA8-MDR cells. Ectopic expression of miR-30c-2 Ã reduces BCL9 mRNA transcript abundance and BCL9 protein. Consistent with this observation, miR-30c-2 Ã ectopic expression also reduced BCL9 luciferase reporter gene expression. In comparison with IOSE cells, all cancer cells examined showed increased BCL9 expression, which is consistent with its role in tumor progression. Taken together, this suggest that growth factor induced proliferation mediates a neutralizing response by significantly increasing miR-30c-2 Ã which reduces BCL9 expression and cell proliferation in SKOV-3 and OVCAR-3 cells, likely as a mechanism to regulate signal transduction downstream. Mol Cancer Res; 9(12); 1732-45. Ó2011 AACR.
BackgroundAlthough the incidence of melanoma in the U.S. is rising faster than any other cancer, the FDA-approved chemotherapies lack efficacy for advanced disease, which results in poor overall survival. Lysophosphatidic acid (LPA), autotaxin (ATX), the enzyme that produces LPA, and the LPA receptors represent an emerging group of therapeutic targets in cancer, although it is not known which of these is most effective.ResultsHerein we demonstrate that thio-ccPA 18:1, a stabilized phosphonothionate analogue of carba cyclic phosphatidic acid, ATX inhibitor and LPA1/3 receptor antagonist, induced a marked reduction in the viability of B16F10 metastatic melanoma cells compared with PBS-treated control by 80-100%. Exogenous LPA 18:1 or D-sn-1-O-oleoyl-2-O-methylglyceryl-3-phosphothioate did not reverse the effect of thio-ccPA 18:1. The reduction in viability mediated by thio-ccPA 18:1 was also observed in A375 and MeWo melanoma cell lines, suggesting that the effects are generalizable. Interestingly, siRNA to LPA3 (siLPA3) but not other LPA receptors recapitulated the effects of thio-ccPA 18:1 on viability, suggesting that inhibition of the LPA3 receptor is an important dualistic function of the compound. In addition, siLPA3 reduced proliferation, plasma membrane integrity and altered morphology of A375 cells. Another experimental compound designed to antagonize the LPA1/3 receptors significantly reduced viability in MeWo cells, which predominantly express the LPA3 receptor.ConclusionsThus the ability of thio-ccPA 18:1 to inhibit the LPA3 receptor and ATX are key to its molecular mechanism, particularly in melanoma cells that predominantly express the LPA3 receptor. These observations necessitate further exploration and exploitation of these targets in melanoma.
Flowering time is a trait vital to the adaptation of flowering plants to different environments. Here, we report that CCT domain genes play an important role in flowering in maize (Zea mays L.). Among the 53 CCT family genes we identified in maize, 28 were located in flowering time quantitative trait locus regions and 15 were significantly associated with flowering time, based on candidate-gene association mapping analysis. Furthermore, a CCT gene named ZmCOL3 was shown to be a repressor of flowering. Overexpressing ZmCOL3 delayed flowering time by approximately 4 d, in either long-day or short-day conditions. The absence of one cytosine in the ZmCOL3 3'UTR and the presence of a 551 bp fragment in the promoter region are likely the causal polymorphisms contributing to the maize adaptation from tropical to temperate regions. We propose a modified model of the maize photoperiod pathway, wherein ZmCOL3 acts as an inhibitor of flowering either by transactivating transcription of ZmCCT, one of the key genes regulating maize flowering, or by interfering with the circadian clock.
Mammalian target of rapamycin (mTOR) signaling plays essential roles in brain development. Hyperactive mTOR is an essential pathological mechanism in autism spectrum disorder (ASD). Here, we show that tripartite motif protein 32 (TRIM32), as a maintainer of mTOR activity through promoting the proteasomal degradation of G protein signaling protein 10 (RGS10), regulates the proliferation of medial/lateral ganglionic eminence (M/LGE) progenitors. Deficiency of TRIM32 results in an impaired generation of GABAergic interneurons and autism-like behaviors in mice, concomitant with an elevated autophagy, which can be rescued by treatment embryonically with 3BDO, an mTOR activator. Transplantation of M/LGE progenitors or treatment postnatally with clonazepam, an agonist of the GABAA receptor, rescues the hyperexcitability and the autistic behaviors of TRIM32−/− mice, indicating a causal contribution of GABAergic disinhibition. Thus, the present study suggests a novel mechanism for ASD etiology in that TRIM32 deficiency-caused hypoactive mTOR, which is linked to an elevated autophagy, leads to autism-like behaviors via impairing generation of GABAergic interneurons. TRIM32−/− mouse is a novel autism model mouse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.