A novel ureidobromophenol, rhodomelin A (1), was characterized from Rhodomela confervoides. Its structure was elucidated by spectroscopic analysis. Both enantiomers of 1 were synthesized using a convergent strategy starting from d/l-pyroglutamic acids, respectively, allowing assignment of the R-configuration for the naturally occurring isomer by chiral HPLC analysis. Rhodomelin A represents the first example of a naturally occurring ureidopyrrolidone alkaloid incorporating a γ-aminobutyric acid unit. The scavenging activity of 1 toward DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate)) radicals was assayed.
Background Development of a deep learning method to identify Barrett's esophagus (BE) scopes in endoscopic images. Methods 443 endoscopic images from 187 patients of BE were included in this study. The gastroesophageal junction (GEJ) and squamous-columnar junction (SCJ) of BE were manually annotated in endoscopic images by experts. Fully convolutional neural networks (FCN) were developed to automatically identify the BE scopes in endoscopic images. The networks were trained and evaluated in two separate image sets. The performance of segmentation was evaluated by intersection over union (IOU). Results The deep learning method was proved to be satisfying in the automated identification of BE in endoscopic images. The values of the IOU were 0.56 (GEJ) and 0.82 (SCJ), respectively. Conclusions Deep learning algorithm is promising with accuracies of concordance with manual human assessment in segmentation of the BE scope in endoscopic images. This automated recognition method helps clinicians to locate and recognize the scopes of BE in endoscopic examinations.
The cytological Ki-67 index is very useful in distinguishing intermediate and high-grade from low-grade PNETs, and a cut-off value of 5% had a better predictive value compared with that of 2%.
Alliance networks are the underlying structures of social systems in business, management, and society. The sustainability and dynamics of a social system rely on the structural evolutions of the topologies. Understanding the evolution sheds light on the dynamics and sustainability of a social system. Minority game models have been successfully applied across social science, economy, management, and engineering. They provide simple yet applicable modeling to articulate the evolutionary cooperation dynamics of competitive players in binary decision situations. By extending the minority games played in alliance networks, the cooperation in structured systems of different network topologies is analyzed. In this model, local and global score strategies are considered with and without cooperation rewiring options. The cooperation level, the score, and the topological properties are investigated. The research uses a numerical simulation approach on random networks, scale-free networks, and small-world networks. The results suggest that the network rewiring strategy leads to higher systemic performance with a higher score and a higher level of stability in decision-making. Competitive decision-making can lead to a higher level of cooperation from a poor initial start. However, stubbornness in decision-making can lead to a poor situation when cooperation is discouraged. Players with local or global information adopt local and global score strategies. The results show that local strategies might lead to imbalance, while a global strategy might achieve a relatively stable outcome. This work contributes to bridge minority games in structured networks to study the cooperation between formation and evolution, and calls for future minority game modeling on social networks.
Background Radiomics may provide more objective and accurate predictions for extrahepatic cholangiocarcinoma (ECC). In this study, we developed radiomics models based on magnetic resonance imaging (MRI) and machine learning to preoperatively predict differentiation degree (DD) and lymph node metastasis (LNM) of ECC. Methods A group of 100 patients diagnosed with ECC was included. The ECC status of all patients was confirmed by pathology. A total of 1200 radiomics features were extracted from axial T1 weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion weighted imaging (DWI), and apparent diffusion coefficient (ADC) images. A systematical framework considering combinations of five feature selection methods and ten machine learning classification algorithms (classifiers) was developed and investigated. The predictive capabilities for DD and LNM were evaluated in terms of area under precision recall curve (AUPRC), area under the receiver operating characteristic (ROC) curve (AUC), negative predictive value (NPV), accuracy (ACC), sensitivity, and specificity. The prediction performance among models was statistically compared using DeLong test. Results For DD prediction, the feature selection method joint mutual information (JMI) and Bagging Classifier achieved the best performance (AUPRC = 0.65, AUC = 0.90 (95% CI 0.75–1.00), ACC = 0.85 (95% CI 0.69–1.00), sensitivity = 0.75 (95% CI 0.30–0.95), and specificity = 0.88 (95% CI 0.64–0.97)), and the radiomics signature was composed of 5 selected features. For LNM prediction, the feature selection method minimum redundancy maximum relevance and classifier eXtreme Gradient Boosting achieved the best performance (AUPRC = 0.95, AUC = 0.98 (95% CI 0.94–1.00), ACC = 0.90 (95% CI 0.77–1.00), sensitivity = 0.75 (95% CI 0.30–0.95), and specificity = 0.94 (95% CI 0.72–0.99)), and the radiomics signature was composed of 30 selected features. However, these two chosen models were not significantly different to other models of higher AUC values in DeLong test, though they were significantly different to most of all models. Conclusion MRI radiomics analysis based on machine learning demonstrated good predictive accuracies for DD and LNM of ECC. This shed new light on the noninvasive diagnosis of ECC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.