Leukoencephalopathies are a diverse group of white matter disorders that can be difficult to diagnose. Using focused and whole-exome sequencing, Lynch et al. expand the known clinical and mutational spectrum of genetic leukoencephalopathy in adulthood, and describe the frequency and clinical and radiological phenotype of the most commonly mutated genes.
IMPORTANCE Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a frequent cause of adult-onset leukodystrophy known to be caused by autosomal dominant mutations in the CSF1R (colony-stimulating factor 1) gene. The discovery that CSF1R mutations cause ALSP led to more accurate prognosis and genetic counseling for these patients in addition to increased interest in microglia as a target in neurodegeneration. However, it has been known since the discovery of the CSF1R gene that there are patients with typical clinical and radiologic evidence of ALSP who do not carry pathogenic CSF1R mutations. These patients include those in whom the pathognomonic features of axonal spheroids and pigmented microglia have been found. Achieving a genetic diagnosis in these patients is important to our understanding of this disorder.OBJECTIVE To genetically characterize a group of patients with typical features of ALSP who do not carry CSF1R mutations.
DESIGN, SETTINGS, AND PARTICIPANTSIn this case series study, 5 patients from 4 families were identified with clinical, radiologic, or pathologic features of ALSP in whom CSF1R mutations had been excluded previously by sequencing.
Seamounts are undersea mountains rising abruptly from the sea floor and interacting dynamically with underwater currents. They represent unique biological habitats with various microbial community structures. Certain seamount bacteria form conspicuous extracellular iron oxide structures, including encrusted stalks, flattened bifurcating tubes, and filamentous sheaths. To extend our knowledge of seamount ecosystems, we performed an integrated study on population structure and the occurrence of magnetotactic bacteria (MTB) that synthesize intracellular iron oxide nanocrystals in sediments of a seamount in the Mariana volcanic arc. We found Proteobacteria dominant at 13 of 14 stations, but ranked second in abundance to members of the phylum Firmicutes at the deep-water station located on a steep slope facing the Mariana-Yap Trench. Live MTB dwell in biogenic sediments from all 14 stations ranging in depth from 238 to 2,023 m. Some magnetotactic cocci possess the most complex flagellar apparatus yet reported; 19 flagella are arranged in a 3:4:5:4:3 array within a flagellar bundle. Phylogenetic analysis of 16S rRNA gene sequences identified 16 novel species of MTB specific to this seamount. Together the results obtained indicate that geographic properties of the seamount stations are important in shaping the bacterial community structure and the MTB composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.