Genomic DNA is folded into a higher-order structure that regulates transcription and maintains genomic stability. Although progress has been made on understanding biochemical characteristics of epigenetic modifications in cancer, the in-situ higher-order folding of chromatin structure during malignant transformation remains largely unknown. Here, using optimized stochastic optical reconstruction microscopy (STORM) for pathological tissue (PathSTORM), we uncover a gradual decompaction and fragmentation of higher-order chromatin folding throughout all stages of carcinogenesis in multiple tumor types, and prior to tumor formation. Our integrated imaging, genomic, and transcriptomic analyses reveal functional consequences in enhanced transcription activities and impaired genomic stability. We also demonstrate the potential of imaging higher-order chromatin disruption to detect high-risk precursors that cannot be distinguished by conventional pathology. Taken together, our findings reveal gradual decompaction and fragmentation of higher-order chromatin structure as an enabling characteristic in early carcinogenesis to facilitate malignant transformation, which may improve cancer diagnosis, risk stratification, and prevention.
Rapid and effective osseointegration is a great challenge in clinical practice. Endogenous electronegative potentials spontaneously appear on bone defect sites and mediate healing. Thus, bone healing can potentially be stimulated using physiologically relevant electrical signals in implants. However, it is difficult to directly introduce physiologically relevant electric fields in bone tissue. In this study, built-in electric fields are established between electropositive ferroelectric BiFeO 3 (BFO) nanofilms and electronegative bone defect walls to trigger implant osseointegration and biological healing. Epitaxial growth technique is used to organize the crystal panel at an atomic scale, and ferroelectric polarization of BFO nanofilms matching the amplitude and direction of endogenous electric potentials on bone defect walls is achieved. In the presence of built-in electric fields, implants with BFO nanofilms with downward polarization (BFO+) show rapid and superior osseointegration in the rat femur. The mechanism of this phenotypic osteogenic behavior is further studied by protein adsorption and stem cell behavior in different time points. BFO+ promotes protein adsorption and mesenchymal stem cell (MSC) attachment, spreading, and osteogenic differentiation. Custom-designed PCR array examination shows sequentially initiated Ca 2+ signaling, cell adhesion and spreading, and PI3K-AKT signaling in MSCs. The results of this study provide a novel strategy for the development of implant surface modification technology.
Fish oil emulsion-supplemented parenteral nutrition significantly reduced SIRS and length of hospital stay. These clinical benefits may be related to normalization of cellular immune functions and modulation of the inflammatory response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.