Microplastics have become emerging contaminants, causing widespread concern about their potential toxic effects. In this study, the uptake and tissue accumulation of polystyrene microplastics (PS-MPs) in zebrafish were detected, and the toxic effects in liver were investigated. The results showed that after 7 days of exposure, 5 μm diameter MPs accumulated in fish gills, liver, and gut, while 20 μm diameter MPs accumulated only in fish gills and gut. Histopathological analysis showed that both 5 μm and 70 nm PS-MPs caused inflammation and lipid accumulation in fish liver. PS-MPs also induced significantly increased activities of superoxide dismutase and catalase, indicating that oxidative stress was induced after treatment with MPs. In addition, metabolomic analysis suggested that exposure to MPs induced alterations of metabolic profiles in fish liver and disturbed the lipid and energy metabolism. These findings provide new insights into the toxic effects of MPs on fish.
Healthcare data are a valuable source of healthcare intelligence. Sharing of healthcare data is one essential step to make healthcare system smarter and improve the quality of healthcare service. Healthcare data, one personal asset of patient, should be owned and controlled by patient, instead of being scattered in different healthcare systems, which prevents data sharing and puts patient privacy at risks. Blockchain is demonstrated in the financial field that trusted, auditable computing is possible using a decentralized network of peers accompanied by a public ledger. In this paper, we proposed an App (called Healthcare Data Gateway (HGD)) architecture based on blockchain to enable patient to own, control and share their own data easily and securely without violating privacy, which provides a new potential way to improve the intelligence of healthcare systems while keeping patient data private. Our proposed purpose-centric access model ensures patient own and control their healthcare data; simple unified Indicator-Centric Schema (ICS) makes it possible to organize all kinds of personal healthcare data practically and easily. We also point out that MPC (Secure Multi-Party Computing) is one promising solution to enable untrusted third-party to conduct computation over patient data without violating privacy.
A novel, high-capacity oil sorbent consisting of polyvinyl chloride (PVC)/polystyrene (PS) fiber was prepared by an electrospinning process. The sorption capacity, oil/water selectivity, and sorption mechanism of the PVC/PS sorbent were studied. The results showed that the sorption capacities of the PVC/PS sorbent for motor oil, peanut oil, diesel, and ethylene glycol were 146, 119, 38, and 81 g/g, respectively. It was about 5-9 times that of a commercial polypropylene (PP) sorbent. The PVC/PS sorbent also had excellent oil/water selectivity (about 1000 times) and high buoyancy in the cleanup of oil over water. The SEM analysis indicated that voids among fibers were the key for the high capacity. The electrospun PVC/PS sorbent is a better alternative to the widely used PP sorbent for oil spill cleanup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.