Edited by Varda RotterKeywords: ATM and p53 associated KZNF protein ARF Oncogenic stress p53 a b s t r a c tThe KRAB-type zinc-finger protein Apak (ATM and p53 associated KZNF protein) specifically suppresses p53-mediated apoptosis. Upon DNA damage, Apak is phosphorylated and inhibited by ATM kinase, resulting in p53 activation. However, how Apak is regulated in response to oncogenic stress remains unknown. Here we show that upon oncogene activation, Apak is inhibited in the tumor suppressor ARF-dependent but ATM-independent manner. Oncogene-induced ARF protein directly interacts with Apak and competes with p53 to bind to Apak, resulting in Apak dissociation from p53. Thus, Apak is differentially regulated in the ARF and ATM-dependent manner in response to oncogenic stress and DNA damage, respectively.
A 30 m long × 20 m wide capillary barrier cover (CBC) test site was constructed at the Jiangcungou landfill in Xi’an, China. The cover consisted of a compacted loess layer with a thickness of 0.9 m underlain by a gravel layer. After the cover surface was kept bare and exposed to natural climate conditions for nearly 5 months, one artificial rainfall event was implemented at the site. Vegetation was established at the test site after the first rainfall event. Four months later, a second artificial rainfall event was applied to the surface of the vegetated site. The pore-water pressures (PWPs) and volumetric water contents (VWCs) of the cover were monitored using jet-filled tensiometers and time-domain reflectometry moisture probes, respectively. Surface runoff and percolation were measured using field collection devices. The field measurements demonstrated a more rapid response of PWPs to the rainfall compared to the response of the VWCs. Percolation was observed when the PWPs near the interface reached the water-entry value of the gravel at local points. At that moment, the measured VWC near the interface was less than the VWC according to the water-entry value. The observation indicated that preferential flows took place in the compacted loess during the rainfall. As a result, the maximum water storage capacity was not reached at the onset of percolation. When percolation ceased, the average PWP near the interface decreased below the water-entry value, while the VWC near the interface was higher than that at the onset of percolation. Water storage at the completion of percolation was approximately 5% greater than that at the onset of percolation. Compared with the monolithic loess cover, the loess–gravel CBC increased the available water storage capacity by 41% at the completion of percolation. Vegetation had an insignificant influence on water storage capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.