Background: Dendritic cell-associated C-type lectin-1 (Dectin-1) receptor has been reported to be involved in neuroinflammation in Alzheimer's disease and traumatic brain injury. The present study was designed to investigate the role of Dectin-1 and its downstream target spleen tyrosine kinase (Syk) in early brain injury after ischemic stroke using a focal cortex ischemic stroke model. Methods: Adult male C57BL/6 J mice were subjected to a cerebral focal ischemia model of ischemic stroke. The neurological score, adhesive removal test, and foot-fault test were evaluated on days 1, 3, 5, and 7 after ischemic stroke. Dectin-1, Syk, phosphorylated (p)-Syk, tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS) expression was analyzed via western blotting in ischemic brain tissue after ischemic stroke and in BV2 microglial cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury in vitro. The brain infarct volume and Iba1-positive cells were evaluated using Nissl's and immunofluorescence staining, respectively. The Dectin-1 antagonist laminarin (LAM) and a selective inhibitor of Syk phosphorylation (piceatannol; PIC) were used for the intervention. Results: Dectin-1, Syk, and p-Syk expression was significantly enhanced on days 3, 5, and 7 and peaked on day 3 after ischemic stroke. The Dectin-1 antagonist LAM or Syk inhibitor PIC decreased the number of Iba1-positive cells and TNF-α and iNOS expression, decreased the brain infarct volume, and improved neurological functions on day 3 after ischemic stroke. In addition, the in vitro data revealed that Dectin-1, Syk, and p-Syk expression was increased following the 3-h OGD and 0, 3, and 6 h of reperfusion in BV2 microglial cells. LAM and PIC also decreased TNF-α and iNOS expression 3 h after OGD/R induction. Conclusion: Dectin-1/Syk signaling plays a crucial role in inflammatory activation after ischemic stroke, and further investigation of Dectin-1/Syk signaling in stroke is warranted.
Background Secondary brain damage caused by the innate immune response and subsequent proinflammatory factor production is a major factor contributing to the high mortality of intracerebral haemorrhage (ICH). Nucleotide-binding oligomerization domain 1 (NOD1)/receptor-interacting protein 2 (RIP2) signalling has been reported to participate in the innate immune response and inflammatory response. Therefore, we investigated the role of NOD1/RIP2 signalling in mice with collagenase-induced ICH and in cultured primary microglia challenged with hemin. Methods Adult male C57BL/6 mice were subjected to collagenase for induction of ICH model in vivo. Cultured primary microglia and BV2 microglial cells (microglial cell line) challenged with hemin aimed to simulate the ICH model in vitro. We first defined the expression of NOD1 and RIP2 in vivo and in vitro using an ICH model by western blotting. The effect of NOD1/RIP2 signalling on ICH-induced brain injury volume, neurological deficits, brain oedema, and microglial activation were assessed following intraventricular injection of either ML130 (a NOD1 inhibitor) or GSK583 (a RIP2 inhibitor). In addition, levels of JNK/P38 MAPK, IκBα, and inflammatory factors, including tumour necrosis factor-α (TNF-α), interleukin (IL)-1β, and inducible nitric oxide synthase (iNOS) expression, were analysed in ICH-challenged brain and hemin-exposed cultured primary microglia by western blotting. Finally, we investigated whether the inflammatory factors could undergo crosstalk with NOD1 and RIP2. Results The levels of NOD1 and its adaptor RIP2 were significantly elevated in the brains of mice in response to ICH and in cultured primary microglia, BV2 cells challenged with hemin. Administration of either a NOD1 or RIP2 inhibitor in mice with ICH prevented microglial activation and neuroinflammation, followed by alleviation of ICH-induced brain damage. Interestingly, the inflammatory factors interleukin (IL)-1β and tumour necrosis factor-α (TNF-α), which were enhanced by NOD1/RIP2 signalling, were found to contribute to the NOD1 and RIP2 upregulation in our study. Conclusion NOD1/RIP2 signalling played an important role in the regulation of the inflammatory response during ICH. In addition, a vicious feedback cycle was observed between NOD1/RIP2 and IL-1β/TNF-α, which could to some extent result in sustained brain damage during ICH. Hence, our study highlights NOD1/RIP2 signalling as a potential therapeutic target to protect the brain against secondary brain damage during ICH.
Ischemia-induced neuronal death leads to serious lifelong neurological deficits in ischemic stroke patients. Histone deacetylase 6 (HDAC6) is a promising target for neuroprotection in many neurological disorders, including ischemic stroke. However, the mechanism by which HDAC6 inhibition protects neurons after ischemic stroke remains unclear. Here, we discovered that genetic ablation or pharmacological inhibition of HDAC6 reduced brain injury after ischemic stroke by increasing macrophage migration inhibitory factor (MIF) acetylation. Mass spectrum analysis and biochemical results revealed that HDAC6 inhibitor or aspirin treatment promoted MIF acetylation on the K78 residue. MIF K78 acetylation suppressed the interaction between MIF and AIF, which impaired MIF translocation to the nucleus in ischemic cortical neurons. Moreover, neuronal DNA fragmentation and neuronal death were impaired in the cortex after ischemia in MIF K78Q mutant mice. Our results indicate that the neuroprotective effect of HDAC6 inhibition and aspirin treatment results from MIF K78 acetylation; thus, MIF K78 acetylation may be a therapeutic target for ischemic stroke and other neurological diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.