Conventional machine learning approaches for predicting material properties from elemental compositions have emphasized the importance of leveraging domain knowledge when designing model inputs. Here, we demonstrate that by using a deep learning approach, we can bypass such manual feature engineering requiring domain knowledge and achieve much better results, even with only a few thousand training samples. We present the design and implementation of a deep neural network model referred to as ElemNet; it automatically captures the physical and chemical interactions and similarities between different elements using artificial intelligence which allows it to predict the materials properties with better accuracy and speed. The speed and best-in-class accuracy of ElemNet enable us to perform a fast and robust screening for new material candidates in a huge combinatorial space; where we predict hundreds of thousands of chemical systems that could contain yet-undiscovered compounds.
Artificial intelligence (AI) and machine learning (ML) have been increasingly used in materials science to build predictive models and accelerate discovery. For selected properties, availability of large databases has also facilitated application of deep learning (DL) and transfer learning (TL). However, unavailability of large datasets for a majority of properties prohibits widespread application of DL/TL. We present a cross-property deep-transfer-learning framework that leverages models trained on large datasets to build models on small datasets of different properties. We test the proposed framework on 39 computational and two experimental datasets and find that the TL models with only elemental fractions as input outperform ML/DL models trained from scratch even when they are allowed to use physical attributes as input, for 27/39 (≈ 69%) computational and both the experimental datasets. We believe that the proposed framework can be widely useful to tackle the small data challenge in applying AI/ML in materials science.
key insightsscalable analytics helps make sense of the influence on and outcome of largescale social and political events, as they unfold.Advanced algorithms for sentiment and response analysis helps differentiate behavior patterns of groups within different communities. twitter discussion on the egyptian revolution was much different from other twitter discussions in terms of who was tweeting and what was said. contributed articlesMAy 2012 | voL. 55 | no. 5 | CommuNiCAtioNs of the ACm 75PhotograPh by dylan MartineZ/reUterS
The application of machine learning (ML) techniques in materials science has attracted significant attention in recent years, due to their impressive ability to efficiently extract data-driven linkages from various input materials representations to their output properties. While the application of traditional ML techniques has become quite ubiquitous, there have been limited applications of more advanced deep learning (DL) techniques, primarily because big materials datasets are relatively rare. Given the demonstrated potential and advantages of DL and the increasing availability of big materials datasets, it is attractive to go for deeper neural networks in a bid to boost model performance, but in reality, it leads to performance degradation due to the vanishing gradient problem. In this paper, we address the question of how to enable deeper learning for cases where big materials data is available. Here, we present a general deep learning framework based on Individual Residual learning (IRNet) composed of very deep neural networks that can work with any vector-based materials representation as input to build accurate property prediction models. We find that the proposed IRNet models can not only successfully alleviate the vanishing gradient problem and enable deeper learning, but also lead to significantly (up to 47%) better model accuracy as compared to plain deep neural networks and traditional ML techniques for a given input materials representation in the presence of big data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.