The AC impedance response of mixed ionic and electronic conductors (MIECs) is derived from first principles and quantitatively compared with experimental data. While the approach is not entirely new, the derivation is provided in a unified and comprehensive manner. Using Sm 0.15 Ce 0.85 O 1:925Àd with Pt electrodes as a model system, a broad spectrum of electrical and thermodynamic properties is extracted solely from the measurement of impedance spectra over wide oxygen partial pressure and temperature ranges. Here, the oxygen partial pressure was varied from air [p O2 5 0.21 atm] to H 2 [p O2 5 10À31 atm], and the temperature was varied from 5001 to 6501C. It was essential for this analysis that the material under investigation exhibit, under some conditions, purely ionic behavior and, under others, mixed conducting behavior. The transition from ionic to mixed conducting behavior is recognizable not only from the oxygen partial pressure dependence of the total conductivity but also directly from the shape of the impedance spectra. Within the electrolytic regime, the impedance spectra (presented in Nyquist form) take the shape of simple, depressed arcs, whereas within the mixed conducting regime (under reducing conditions), the spectra exhibit the features associated with a half tear-drop-shaped element. Parameters derived from quantitative fitting of the impedance spectra include the concentration of free electron carriers, the mobilities and activation energies for both ion and electron transport, the electrolytic domain boundary, and the entropy and enthalpy of reduction. In addition, the electrochemical behavior of O 2 and H 2 at the Ptjceria interface has been characterized from these measurements. Under oxidizing conditions, the data suggest an oxygen electrochemical reaction that is rate limited by the dissociated adsorption/diffusion of oxygen species on the Pt electrode, similar to PtjYSZ (yttria-stabilized zirconia). Under reducing conditions, the inverse of the electrode resistivity obeys a p À1=4 O2 dependence, with an activation energy that is similar to that measured for the electronic conductivity. These results suggest that ceria is electrochemically active for hydrogen electro-oxidation and that the reaction is limited by the rate of removal of electrons from the ceria surface.
The intercalation pathway of lithium iron phosphate (LFP) in the positive electrode of a lithium-ion battery was probed at the ∼40 nm length scale using oxidation-state-sensitive X-ray microscopy. Combined with morphological observations of the same exact locations using transmission electron microscopy, we quantified the local state-of-charge of approximately 450 individual LFP particles over nearly the entire thickness of the porous electrode. With the electrode charged to 50% state-of-charge in 0.5 h, we observed that the overwhelming majority of particles were either almost completely delithiated or lithiated. Specifically, only ∼2% of individual particles were at an intermediate state-of-charge. From this small fraction of particles that were actively undergoing delithiation, we conclude that the time needed to charge a particle is ∼1/50 the time needed to charge the entire particle ensemble. Surprisingly, we observed a very weak correlation between the sequence of delithiation and the particle size, contrary to the common expectation that smaller particles delithiate before larger ones. Our quantitative results unambiguously confirm the mosaic (particle-by-particle) pathway of intercalation and suggest that the rate-limiting process of charging is initiating the phase transformation by, for example, a nucleation-like event. Therefore, strategies for further enhancing the performance of LFP electrodes should not focus on increasing the phase-boundary velocity but on the rate of phase-transformation initiation.
Some of the best thermoelectrics are complex materials with rattling guests inside oversized atomic cages. Understanding the chemical and structural origins of the rattling behavior is essential to the design of thermoelectric materials. In this work, a clear connection is established between the local bonding asymmetry and anharmonic rattling modes in tetrahedrite thermoelectrics, enabled by the chemically active electron lone pairs. The studies reveal a fi ve-atom atomic cage Sb[CuS 3 ]Sb in Cu 12 Sb 4 S 13 tetrahedrites that exhibits strong local bonding asymmetry: covalent bonding inside the CuS 3 trigonal plane and weak out-of-plane bonding induced by the lone-pair electrons of Sb. This bonding asymmetry leads to out-of-plane rattling modes that are quasilocalized and anharmonic with low frequency and large amplitude, and are likely the origin of low thermal conductivity in tetrahedrites. Such knowledge highlights the importance of local structure asymmetry and lonepair atoms in driving anharmonic rattling, providing a stepping stone to the discovery and design of next-generation thermoelectrics.
Most of the current techniques for detection of dopamine exploit its ease of oxidation. However, the oxidative approaches suffer from a common problem. The products of dopamine oxidation can react with ascorbic acid present in samples and regenerate dopamine again, which severely limits the accuracy of detection. In this paper, we report a nonoxidative approach to electrochemically detect dopamine with high sensitivity and selectivity. This approach takes advantage of the high performance of our newly developed poly(anilineboronic acid)/carbon nanotube composite and the excellent permselectivity of the ion-exchange polymer Nafion. The binding of dopamine to the boronic acid groups of the polymer with large affinity affects the electrochemical properties of the polyaniline backbone, which act as the transduction mechanism of this nonoxidative dopamine sensor. The unique reduction capability and high conductivity of single-stranded DNA functionalized, single-walled carbon nanotubes greatly improved the electrochemical activity of the polymer in physiological buffer, and the large surface area of the carbon nanotubes largely increased the density of the boronic acid receptors. The high sensitivity along with the improved selectivity of this sensing approach is a significant step forward toward molecular diagnosis of Parkinson's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.