The widespread multidrug resistance resulting from the abuse of antibiotics motivates researchers to explore alternative methods to treat bacterial infections. Recently, the emergence of nanozymes has provided a potential approach to combat bacteria. Such nanozymes can mimic the functions of natural enzymes to induce the production of highly toxic reactive oxygen species (ROS) as an antibacterial. However, the lack of effective interaction between nanozymes and bacteria, and the intrinsic short lifetime and diffusion distance of ROS greatly compromise their bactericidal activity. Furthermore, the dead bacteria left in the infected area can give rise to unexpected tissue inflammation. Herein, for the first time, a nanozyme-hydrogel is constructed to realize reinforced antibacterials. The nanozyme-hydrogel with the traits of positive charge and macropore can capture and restrict bacteria in the range of ROS destruction. Significantly, by combining the near-infrared photothermal property of nanozymes, the nanozyme-hydrogel can achieve a synergistic bactericidal effect. More importantly, the nanozyme-hydrogel can eliminate bacteria and reduce the risk of inflammation. In consequence, the current work manifests an original strategy to improve the antibacterial performance of nanozymes, concurrently promote wound healing.
A novel algorithm based on the optimized decimation of tensor networks with super-orthogonalization (ODTNS) that can be applied to simulate efficiently and accurately not only the thermodynamic but also the ground state properties of two-dimensional (2D) quantum lattice models is proposed. By transforming the 2D quantum model into a three-dimensional (3D) closed tensor network (TN) comprised of the tensor product density operator and a 3D brick-wall TN, the free energy of the system can be calculated with the imaginary time evolution, in which the network Tucker decomposition is suggested for the first time to obtain the optimal lower-dimensional approximation on the bond space by transforming the TN into a super-orthogonal form. The efficiency and accuracy of this algorithm are testified, which are fairly comparable with the quantum Monte Carlo calculations. Besides, the present ODTNS scheme can also be applicable to the 2D frustrated quantum spin models with nice efficiency.
Summary
Excess loading of phosphorus (P) and nitrogen (N) triggers a shift in the trophic structure of shallow lakes from a clear‐water, macrophyte‐dominated state to an algal‐dominated turbid state. However, the role of N in the shift is debated, and experimental evidence is, with a few exceptions, based on short‐term studies (days to a few months).
We studied the effect of N loading on macrophytes (dominated by Potamogeton lucens and Cabomba caroliniana), periphyton, filamentous algae and phytoplankton in mesocosms over 10 months (starting in October) in subtropical China (Wuhan). There were three N treatments: controls (CN) without nitrogen addition (mean TN = 1.9 mg L−1), low nitrogen (LN) addition (mean TN = 3.5 mg L−1) and high nitrogen (HN) addition (mean TN = 5.5 mg L−1). Total phosphorus (TP) concentration in the water column remained moderate (0.05–0.07 mg L−1) during the experiment in all treatments.
Macrophyte abundance declined in the LN and HN treatments in the first 6 months, but not in controls, followed by a partial recovery in the LN treatments. They disappeared completely in the HN treatments the following summer. Periphyton (biofilm on plastic) and phytoplankton biomass remained unaffected during the first 6 months but increased over the summer by two or three times, compared with controls, in low and high nitrogen treatments, respectively. By contrast, the abundance of filamentous algae increased over winter but declined during the summer with no obvious relationship to the N treatments. There was no difference in the TN or nitrate concentrations or soluble protein, soluble sugar and Chl‐a content of P. lucens leaves and stems with increasing N load.
Macrophyte populations are partially resilient to abrupt increases in N loading at moderate TP concentrations, but, after prolonged exposure, a complete collapse occurs. Our results further indicate that macrophyte loss is exacerbated by shading by filamentous algae during the winter, and by phytoplankton and periphyton in the summer, while there was no indication of direct N toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.