Bending 3D free form metal plates is a common process used in many heavy industries such as shipbuilding. The traditional method is the so-called line heating method, which is not only labor intensive but also inefficient and error-prone. This paper presents a new incremental bending method based on minimum energy principle and model-less control. First, the sheet metal is discretized into a number of strips connected through virtual springs. Next, by applying the minimum energy principle, the punching and supporting points are calculated for the strip. Then, the bended shape of the strip is computed based on the beam bending theory. This process is continued until the final shape is reached. To compensate the bending error, the computer vision-based model-less control is applied. The computer vision detects the bending error based on which additional bending steps are calculated. The new method is tested in a custom build incremental bending machine. Different metal plates are formed. For a metal plate of 1000 × 800 × 5 mm3, the average bending error is less than 3 mm. In comparison with the existing methods, the new method has a number of advantages, including simple, fast, and highly energy efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.