Superconductivity in compressed lithium is observed by magnetic susceptibility and electrical resistivity measurements. A superconducting critical temperature (Tc) is found ranging from 9 to 16 kelvin at 23 to 80 gigapascals. The pressure dependence of Tc suggests multiple phase transitions, consistent with theoretical predictions and reported x-ray diffraction results. The observed values for Tc are much lower than those theoretically predicted, indicating that more sophisticated theoretical treatments similar to those proposed for metallic hydrogen may be required to understand superconductivity in dense phases of lithium.
Magnetic skyrmions are particle-like magnetization configurations which can be found in materials with broken inversion symmetry. Their topological nature allows them to circumvent around random pinning sites or impurities as they move within the magnetic layer, which makes them interesting as information carriers in memory devices. However, when the skyrmion is driven by a current, a Magnus force is generated which leads to the skyrmion moving away from the direction of the conduction electron flow. The deflection poses a serious problem to the realization of skyrmion-based devices, as it leads to skyrmion annihilation at the film edges. Here, we show that it is possible to guide the movement of the skyrmion and prevent it from annihilating by surrounding and compressing the skyrmion with strong local potential barriers. The compressed skyrmion receives higher contribution from the spin transfer torque, which results in the significant increase of the skyrmion speed.
Superconductors Superconductors D 8000Superconductivity in Dense Lithium. -As revealed by magnetic susceptibility and electrical resistivity measurements, compressed Li shows superconductivity with a critical temperature T C ranging from 9 to 16 K at 23 to 80 GPa. The observed T C values are much lower than those predicted theoretically, indicating that more sophisticated theoretical treatments may be required to understand superconductivity in dense phases of Li. -(STRUZHKIN*, V. V.; EREMETS, M. I.; GAN, W.; MAO, H.-K.; HEMLEY, R.
Despite the inefficiencies associated with current-induced spin torques, they remain the predominant mode of skyrmion propulsion. In this work, we demonstrate numerically that skyrmions can be transported much more efficiently with a voltage-controlled magnetic anisotropy (VCMA) gradient. An analytical model was developed to understand the underlying skyrmion dynamics on a track under the VCMA conditions. Our calculations reveal that the repulsive skyrmion-edge interaction not only prevents the skyrmion from annihilating but also generates most of the skyrmion propulsion. A multiplexed array of gate electrodes can be used to create discrete anisotropy gradients over a long distance, leading to the formation of a series of translatable skyrmion potential wells. Due to the strong confining potentials, skyrmions are transported at a 70% higher packing density. Finally, we demonstrated that this form of skyrmion propulsion can also be implemented on almost any 2D geometry, providing improved versatility over current-induced methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.