Gaucher disease (GD) leads to accumulation of glucosylceramide (GL1) and its deacylated lysolipid, glucosylsphingosine (lyso-GL1) which is implicated in mediating immune dysregulation and skeletal disease. The aim of our study was to assess plasma Lyso-GL1 as a biomarker of GD and its response to therapy. Plasma lyso-GL1 in 169 patients with GD type 1 (GD1) was measured by LC-MS/MS. Significant predictors of were assessed by Pearson’s correlation coefficient, Wilcoxon Mann Whitney test and multiple linear regression. Propensity scores were used to match patients on treatment mode: Enzyme Replacement Therapy (ERT) vs Eliglustat Tartrate SRT (ELI-SRT). Lyso-GL1 levels in healthy controls on average was 1.5 ng/ml (1.3 – 1.7; 95% CI). In untreated GD patients, the levels were massively elevated (180.9 ng/ml: 95% CI, 145.4 – 216.5) and ERT resulted in marked reduction (89 ng/ml: 95% CI, 69.2 – 129.4) (p<0.001). Lyso-GL1 correlated with chitotriosidase (r=0.59 p<0.001), CCL18 (r= 0.62 p <0.001), hepatomegaly (r=0.28 p<0.001), splenomegaly (r=0.27 p=0.003), splenectomy (p=0.01) and treatment mode (p<0.001). By multiple linear regression, the strongest predictors of lyso-GL1 were age (p<0.001), splenectomy (p=0.02), Chitotriosidase (p<0.001) and CCL18 levels (p=0.001). After propensity score matching to obtain comparable groups of patients on ERT vs ELI-SRT, lyso-GL1 levels were lower among patients receiving ELI-SRT by 113 ng/ml (95% CI: 136 – 90.3 ng/ml p<0.001). Plasma lyso-GL1 is a key biomarker of GD. ERT reduced lyso-GL1 levels. By propensity scoring, ELI-SRT resulted in greater reduction of lyso-GL1 than ERT.
Fabry disease is an X-linked glycosphingolipid storage disorder caused by a deficiency in the activity of the lysosomal hydrolase α-galactosidase A (α-gal). This deficiency results in accumulation of the glycosphingolipid globotriaosylceramide (GL-3) in lysosomes. Endothelial cell storage of GL-3 frequently leads to kidney dysfunction, cardiac and cerebrovascular disease. The current treatment for Fabry disease is through infusions of recombinant α-gal (enzyme-replacement therapy; ERT). Although ERT can markedly reduce the lysosomal burden of GL-3 in endothelial cells, variability is seen in the clearance from several other cell types. This suggests that alternative and adjuvant therapies may be desirable. Use of glucosylceramide synthase inhibitors to abate the biosynthesis of glycosphingolipids (substrate reduction therapy, SRT) has been shown to be effective at reducing substrate levels in the related glycosphingolipidosis, Gaucher disease. Here, we show that such an inhibitor (eliglustat tartrate, Genz-112638) was effective at lowering GL-3 accumulation in a mouse model of Fabry disease. Relative efficacy of SRT and ERT at reducing GL-3 levels in Fabry mouse tissues differed with SRT being more effective in the kidney, and ERT more efficacious in the heart and liver. Combination therapy with ERT and SRT provided the most complete clearance of GL-3 from all the tissues. Furthermore, treatment normalized urine volume and uromodulin levels and significantly delayed the loss of a nociceptive response. The differential efficacies of SRT and ERT in the different tissues indicate that the combination approach is both additive and complementary suggesting the possibility of an improved therapeutic paradigm in the management of Fabry disease.
Gaucher disease is caused by a deficiency of the lysosomal enzyme glucocerebrosidase (acid β-glucosidase), with consequent cellular accumulation of glucosylceramide (GL-1). The disease is managed by intravenous administrations of recombinant glucocerebrosidase (imiglucerase), although symptomatic patients with mild to moderate type 1 Gaucher disease for whom enzyme replacement therapy (ERT) is not an option may also be treated by substrate reduction therapy (SRT) with miglustat. To determine whether the sequential use of both ERT and SRT may provide additional benefits, we compared the relative pharmacodynamic efficacies of separate and sequential therapies in a murine model of Gaucher disease (D409V/null). As expected, ERT with recombinant glucocerebrosidase was effective in reducing the burden of GL-1 storage in the liver, spleen, and lung of 3-month-old Gaucher mice. SRT using a novel inhibitor of glucosylceramide synthase (Genz-112638) was also effective, albeit to a lesser degree than ERT. Animals administered recombinant glucocerebrosidase and then Genz-112638 showed the lowest levels of GL-1 in all the visceral organs and a reduced number of Gaucher cells in the liver. This was likely because the additional deployment of SRT following enzyme therapy slowed the rate of reaccumulation of GL-1 in the affected organs. Hence, in patients whose disease has been stabilized by intravenously administered recombinant glucocerebrosidase, orally administered SRT with Genz-112638 could potentially be used as a convenient maintenance therapy. In patients naïve to treatment, ERT followed by SRT could potentially accelerate clearance of the offending substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.