The Yangtze River estuary (YRE) and Hangzhou Bay (HZB) is of environmental significance because of the negative impact from industrial activities and rapid development of aquaculture on the south bank of HZB (SHZB) in recent years. This study investigated the distribution and risk assessments of trace metals (Cr, Cu, Zn, Hg, Pb, and Cd) accumulated in surface sediments by sampling in YRE, outer and south HZB. Copper and Zn concentration (avg. 35.4 and 98.7 mg kg, respectively) in surface sediments were generally higher than the background suggesting a widespread of Cu and Zn in the coastal area of Yangtze River Delta. High concentrations of Cu (~ 42 mg kg), Zn (~ 111 mg kg), Cd (~ 0.27 mg kg), and Hg (~ 0.047 mg kg) were found in inner estuary of YRE and decreased offshore as a result of terrestrial input and dilution effect of total metal contents by "cleaner" sediments from the adjacent sea. In outer HZB, accumulation of terrestrial derived metal has taken place near the Zhoushan Islands. Increase in sediment metal concentration from the west (inner) to the east (outer) of SHZB gave rise to the input of fine-grained sediments contaminated with metals from outer bay. According the results from geoaccumulation index, nearly 75% of samples from YRE were moderately polluted (1.0 < I < 2.0) by Cd. Cadmium and Hg contributed for 80~90% to the potential ecological risk index in the YRE and HZB, with ~ 72% sites in HZB under moderate risk (150 ≤ RI < 300) especially near Zhoushan Islands.
The increasing levels of heavy metals in the environment generally related with the rapid industrialization and urbanization. Mercury (Hg) is a global toxin with wide concerns, and China gradually becomes the main producer, consumer, and emitter of Hg in the world. However, few historical data are available on the occurrence of Hg in Chinese urban areas. Here, we collected 35 lake surface sediment samples from 35 public parks and 1 sediment core in the Luxun Park in Shanghai, a hyper-urbanization city in China, to determine the spatial and vertical distributions of total mercury (THg) and methylmercury (MeHg) and to explore the Hg pollution history with the industrial development. Higher concentrations of Hg and MeHg and greater Hg enrichment were found in urban areas compared with suburban area with the following order: central urban core area > developed urban area > developing urban area > suburban area. The THg concentration in the sediment core showed an increasing trend from 1876 to 2000 and a decreasing trend from 2000 to 2012, coinciding with the process of industrialization and urbanization in Shanghai. However, THg fluxes unceasingly increased from 1876 to present probably attributed to coal consumption in the suburban area and transportation agglomeration in the central urban core area. Unlike THg, no significant variations for MeHg with time and the maximum value (0.17 μg/kg) appeared in 1947. The methylation ratio of MeHg to THg in the sediment is pretty low, and more studies are needed to further understand the fate of Hg in the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.