BackgroundCoronavirus disease 2019 (COVID-19) has produced a significant health burden worldwide, especially in patients with cardiovascular comorbidities. The aim of this systematic review and meta-analysis was to assess the impact of underlying cardiovascular comorbidities and acute cardiac injury on in-hospital mortality risk.MethodsPubMed, Embase and Web of Science were searched for publications that reported the relationship of underlying cardiovascular disease (CVD), hypertension and myocardial injury with in-hospital fatal outcomes in patients with COVID-19. The ORs were extracted and pooled. Subgroup and sensitivity analyses were performed to explore the potential sources of heterogeneity.ResultsA total of 10 studies were enrolled in this meta-analysis, including eight studies for CVD, seven for hypertension and eight for acute cardiac injury. The presence of CVD and hypertension was associated with higher odds of in-hospital mortality (unadjusted OR 4.85, 95% CI 3.07 to 7.70; I2=29%; unadjusted OR 3.67, 95% CI 2.31 to 5.83; I2=57%, respectively). Acute cardiac injury was also associated with a higher unadjusted odds of 21.15 (95% CI 10.19 to 43.94; I2=71%).ConclusionCOVID-19 patients with underlying cardiovascular comorbidities, including CVD and hypertension, may face a greater risk of fatal outcomes. Acute cardiac injury may act as a marker of mortality risk. Given the unadjusted results of our meta-analysis, future research are warranted.
The combination of high atomic number and high oxidation state in U materials gives rise to both high X-ray attenuation efficiency and intense green luminescence originating from ligand-to-metal charge transfer. These two features suggest that U materials might act as superior X-ray scintillators, but this postulate has remained substantially untested. Now the first observation of intense X-ray scintillation in a uranyl-organic framework (SCU-9) that is observable by the naked eye is reported. Combining the advantage in minimizing the non-radiative relaxation during the X-ray excitation process over those of inorganic salts of uranium, SCU-9 exhibits a very efficient X-ray to green light luminescence conversion. The luminescence intensity shows an essentially linear correlation with the received X-ray intensity, and is comparable with that of commercially available CsI:Tl. SCU-9 possesses an improved X-ray attenuation efficiency (E>20 keV) as well as enhanced radiation resistance and decreased hygroscopy compared to CsI:Tl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.