Acceptor-doped barium cerate is considered as one of the state-of-the-art high temperature proton conductors (HTPCs), and the proton conductivity of such HTPCs is heavily dependent on the dopant. In this work, a codoping strategy is employed to improve the electrical conductivity and sinterability of BaCeO3-based HTPC. BaCe0.8Sm(x)Y(0.2-x)O(3-δ) (0 ≤ x ≤ 0.2) powders are synthesized by a typical citrate-nitrate combustion method. The XRD and Raman spectra reveal all the compounds have an orthorhombic perovskite structure. The effects of Sm and/or Y doping on the sinterability and electrical conductivity under different atmospheres are carefully investigated. The SEM results of the sintered BaCe0.8Sm(x)Y(0.2-x)O(3-δ) pellets indicate a significant sintering enhancement with increasing Sm concentration. BaCe0.8Sm0.1Y0.1O(3-δ) exhibits the highest electrical conductivity in hydrogen among the BaCe0.8Sm(x)Y(0.2-x)O(3-δ) pellets. Anode-supported BaCe0.8Sm0.1Y0.1O(3-δ) electrolyte membranes are also fabricated via a drop-coating process, and the corresponding single cell exhibits desirable power performance and durability at low temperatures. The results demonstrate that BaCe0.8Sm0.1Y0.1O(3-δ) is a promising proton conductor with high conductivity and sufficient sinterability for proton-conducting solid oxide fuel cells operating at reduced temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.