Herein, prussian blue nanoparticles, an ancient dye, were explored as a new generation of near-infrared laser-driven photothermal ablation agents for cancer therapy alternative to traditional agents due to their good photothermal efficiency and high photothermal stability but low cost and particularly clinically approved biosafety.
Recently, RBC membrane coated nanoparticles have attracted much attention because of their excellent immune escape ability; meanwhile, Au nanocages (AuNs) have been extensively used for cancer therapy due to its photothermal effect and drug delivery capability. The combination of RBC membrane coating and Au nanocages may provide an effective approach for targeted cancer therapy. However, few reports have shown the utilization of combining these two technologies. Here, we present the development of Erythrocyte membrane-coated Gold nanocages for targeted cancer photothermal and chemical therapy. First, anti-EpCam antibodies are used to modify RBC membranes to target 4T1 cancer cells. Second, the antitumor drug paclitaxel is encapsulated into AuNs. Then, the AuNs are coated with the modified RBC membranes. This new nanoparticles are termed EpCam-RPAuNs. We characterize the capability of EpCam-RPAuNs for selective tumor targeting via exposure to the near-infrared irradiation. Experimental results demonstrate that EpCam-RPAuNs can effectively generate hyperthermia and precisely deliver the antitumor drug PTX to targeted cells. We also validate the biocompatibility of our EpCam-RPAuNs in vitro. By combining the targeting moleculars modified RBC membrane and AuNs, our approach provides a new way to design biomimetic nanoparticles to enhance the surface functionality of nanoparticles. We believe that EpCam-RPAuNs can be potentially applied for cancer diagnoses and therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.