The monthly Extended Reconstructed Sea Surface Temperature (ERSST) dataset, available on global 28 3 28 grids, has been revised herein to version 4 (v4) from v3b. Major revisions include updated and substantially more complete input data from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) release 2.5; revised empirical orthogonal teleconnections (EOTs) and EOT acceptance criterion; updated sea surface temperature (SST) quality control procedures; revised SST anomaly (SSTA) evaluation methods; updated bias adjustments of ship SSTs using the Hadley Centre Nighttime Marine Air Temperature dataset version 2 (HadNMAT2); and buoy SST bias adjustment not previously made in v3b.Tests show that the impacts of the revisions to ship SST bias adjustment in ERSST.v4 are dominant among all revisions and updates. The effect is to make SST 0.18-0.28C cooler north of 308S but 0.18-0.28C warmer south of 308S in ERSST.v4 than in ERSST.v3b before 1940. In comparison with the Met Office SST product [the Hadley Centre Sea Surface Temperature dataset, version 3 (HadSST3)], the ship SST bias adjustment in ERSST.v4 is 0.18-0.28C cooler in the tropics but 0.18-0.28C warmer in the midlatitude oceans both before 1940 and from 1945 to 1970. Comparisons highlight differences in long-term SST trends and SSTA variations at decadal time scales among ERSST.v4, ERSST.v3b, HadSST3, and Centennial Observation-Based Estimates of SST version 2 (COBE-SST2), which is largely associated with the difference of bias adjustments in these SST products. The tests also show that, when compared with v3b, SSTAs in ERSST.v4 can substantially better represent the El Niño/La Niña behavior when observations are sparse before 1940. Comparisons indicate that SSTs in ERSST.v4 are as close to satellite-based observations as other similar SST analyses.
Described herein is the parametric and structural uncertainty quantification for the monthly Extended Reconstructed Sea Surface Temperature (ERSST) version 4 (v4). A Monte Carlo ensemble approach was adopted to characterize parametric uncertainty, because initial experiments indicate the existence of significant nonlinear interactions. Globally, the resulting ensemble exhibits a wider uncertainty range before 1900, as well as an uncertainty maximum around World War II. Changes at smaller spatial scales in many regions, or for important features such as Niño-3.4 variability, are found to be dominated by particular parameter choices.Substantial differences in parametric uncertainty estimates are found between ERSST.v4 and the independently derived Hadley Centre SST version 3 (HadSST3) product. The largest uncertainties are over the mid and high latitudes in ERSST.v4 but in the tropics in HadSST3. Overall, in comparison with HadSST3, ERSST.v4 has larger parametric uncertainties at smaller spatial and shorter time scales and smaller parametric uncertainties at longer time scales, which likely reflects the different sources of uncertainty quantified in the respective parametric analyses. ERSST.v4 exhibits a stronger globally averaged warming trend than HadSST3 during the period of 1910-2012, but with a smaller parametric uncertainty. These global-mean trend estimates and their uncertainties marginally overlap.Several additional SST datasets are used to infer the structural uncertainty inherent in SST estimates. For the global mean, the structural uncertainty, estimated as the spread between available SST products, is more often than not larger than the parametric uncertainty in ERSST.v4. Neither parametric nor structural uncertainties call into question that on the global-mean level and centennial time scale, SSTs have warmed notably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.