To investigate critical frequency bands and channels, this paper introduces deep belief networks (DBNs) to constructing EEG-based emotion recognition models for three emotions: positive, neutral and negative. We develop an EEG dataset acquired from 15 subjects. Each subject performs the experiments twice at the interval of a few days. DBNs are trained with differential entropy features extracted from multichannel EEG data. We examine the weights of the trained DBNs and investigate the critical frequency bands and channels. Four different profiles of 4, 6, 9 and 12 channels are selected. The recognition accuracies of these four profiles are relatively stable with the best accuracy of 86.65%, which is even better than that of the original 62 channels. The critical frequency bands and channels determined by using the weights of trained DBNs are consistent with the existing observations. In addition, our experiment results show that neural signatures associated with different emotions do exist and they share commonality across sessions and individuals. We compare the performance of deep models with shallow models. The average accuracies of DBN, SVM, LR and KNN are 86.08%, 83.99%, 82.70% and 72.60%, respectively.
Abstract-In this paper, we investigate stable patterns of electroencephalogram (EEG) over time for emotion recognition using a machine learning approach. Up to now, various findings of activated patterns associated with different emotions have been reported. However, their stability over time has not been fully investigated yet. In this paper, we focus on identifying EEG stability in emotion recognition. To validate the efficiency of the machine learning algorithms used in this study, we systematically evaluate the performance of various popular feature extraction, feature selection, feature smoothing and pattern classification methods with the DEAP dataset and a newly developed dataset for this study. The experimental results indicate that stable patterns exhibit consistency across sessions; the lateral temporal areas activate more for positive emotion than negative one in beta and gamma bands; the neural patterns of neutral emotion have higher alpha responses at parietal and occipital sites; and for negative emotion, the neural patterns have significant higher delta responses at parietal and occipital sites and higher gamma responses at prefrontal sites. The performance of our emotion recognition system shows that the neural patterns are relatively stable within and between sessions.
In this paper, we present a multimodal emotion recognition framework called EmotionMeter that combines brain waves and eye movements. To increase the feasibility and wearability of EmotionMeter in real-world applications, we design a six-electrode placement above the ears to collect electroencephalography (EEG) signals. We combine EEG and eye movements for integrating the internal cognitive states and external subconscious behaviors of users to improve the recognition accuracy of EmotionMeter. The experimental results demonstrate that modality fusion with multimodal deep neural networks can significantly enhance the performance compared with a single modality, and the best mean accuracy of 85.11% is achieved for four emotions (happy, sad, fear, and neutral). We explore the complementary characteristics of EEG and eye movements for their representational capacities and identify that EEG has the advantage of classifying happy emotion, whereas eye movements outperform EEG in recognizing fear emotion. To investigate the stability of EmotionMeter over time, each subject performs the experiments three times on different days. EmotionMeter obtains a mean recognition accuracy of 72.39% across sessions with the six-electrode EEG and eye movement features. These experimental results demonstrate the effectiveness of EmotionMeter within and between sessions.
The forehead setup allows for the simultaneous collection of EEG and EOG and achieves comparative performance using only four shared electrodes in comparison with the temporal and posterior sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.