Highlight textThis study presents the genome-wide characterization of the Populus WRKY family under biotic and abiotic stresses. Overexpression of an SA-inducible gene, PtrWRKY89, enhanced resistance to pathogens in transgenic poplar.
Summary The secondary cell wall is an important carbon sink in higher plants and its biosynthesis requires coordination of metabolic fluxes in the phenylpropanoid pathway. In Arabidopsis (Arabidopsis thaliana), MYB75 and the KNOX transcription factor KNAT7 form functional complexes to regulate secondary cell wall formation in the inflorescence stem. However, the molecular mechanism by which these transcription factors control different branches of the phenylpropanoid pathway remains poorly understood in woody species. We isolated an R2R3‐MYB transcription factor MYB6 from Populus tomentosa and determined that it was expressed predominately in young leaves. Overexpression of MYB6 in transgenic poplar upregulated flavonoid biosynthetic gene expression, resulting in significantly increased accumulation of anthocyanin and proanthocyanidins. MYB6‐overexpression plants showed reduced secondary cell wall deposition, accompanied by repressed expression of secondary cell wall biosynthetic genes. We further showed that MYB6 interacted physically with KNAT7 and formed functional complexes that acted to repress secondary cell wall development in poplar and Arabidopsis. The results provide an insight into the transcriptional mechanisms involved in the regulation of the metabolic fluxes between the flavonoid and lignin biosynthetic pathways in poplar.
Because of the importance of wood in many industrial applications, tremendous studies have been performed on wood formation, especially in lignin biosynthesis. MYB transcription factors (TFs), which consist of a large family of plant TFs, have been reported to directly regulate lignin biosynthetic genes in a number of plants. In this study, we describe the cloning and functional characterization of PtoMYB216, a cDNA isolated from Chinese white poplar (Populus tomentosa Carr.). PtoMYB216 encodes a protein belonging to the R2R3-MYB family and displays significant similarity with other MYB factors shown to regulate lignin synthesis in Arabidopsis. Gene expression profiling studies showed that PtoMYB216 mRNA is specifically expressed during secondary wall formation in wood. The 1.8-kb promoter sequence of PtoMYB216 was fused to the GUS coding sequence and introduced into wild-type A. thaliana. GUS expression was shown to be restricted to tissues undergoing secondary cell wall formation. Overexpression of PtoMYB216 specifically activated the expression of the upstream genes in the lignin biosynthetic pathway and resulted in ectopic deposition of lignin in cells that are normally unligninified. These results suggest that PtoMYB216 is specific transcriptional activators of lignin biosynthesis and involved in the regulation of wood formation in poplar.
Summary Wood development is strictly regulated by various phytohormones and auxin plays a central regulatory role in this process. However, how the auxin signaling is transducted in developing secondary xylem during wood formation in tree species remains unclear. Here, we identified an Aux/INDOLE‐3‐ACETIC ACID 9 (IAA9)‐AUXIN RESPONSE FACTOR 5 (ARF5) module in Populus tomentosa as a key mediator of auxin signaling to control early developing xylem development. PtoIAA9, a canonical Aux/IAA gene, is predominantly expressed in vascular cambium and developing secondary xylem and induced by exogenous auxin. Overexpression of PtoIAA9m encoding a stabilized IAA9 protein significantly represses secondary xylem development in transgenic poplar. We further showed that PtoIAA9 interacts with PtoARF5 homologs via the C‐terminal III/IV domains. The truncated PtoARF5.1 protein without the III/IV domains rescued defective phenotypes caused by PtoIAA9m. Expression analysis showed that the PtoIAA9‐PtoARF5 module regulated the expression of genes associated with secondary vascular development in PtoIAA9m‐ and PtoARF5.1‐overexpressing plants. Furthermore, PtoARF5.1 could bind to the promoters of two Class III homeodomain‐leucine zipper (HD‐ZIP III) genes, PtoHB7 and PtoHB8, to modulate secondary xylem formation. Taken together, our results suggest that the Aux/IAA9‐ARF5 module is required for auxin signaling to regulate wood formation via orchestrating the expression of HD‐ZIP III transcription factors in poplar.
Summary Ferulate 5‐hydroxylase (F5H) is a limiting enzyme involved in biosynthesizing sinapyl (S) monolignol in angiosperms. Genetic regulation of F5H can influence S monolignol synthesis and therefore improve saccharification efficiency and biofuel production. To date, little is known about whether F5H is post‐transcriptionally regulated by endogenous microRNAs (miRNAs) in woody plants. Here, we report that a microRNA, miR6443, specifically regulates S lignin biosynthesis during stem development in Populus tomentosa. In situ hybridization showed that miR6443 is preferentially expressed in vascular tissues. We further identified that F5H2 is the direct target of miR6443. Overexpression of miR6443 decreased the transcript level of F5H2 in transgenic plants, resulting in a significant reduction in S lignin content. Conversely, reduced miR6443 expression by short tandem target mimics (STTM) elevated F5H2 transcripts, therefore increasing S lignin composition. Introduction of a miR6443‐resistant form of F5H2 into miR6443‐overexpression plants restored lignin ectopic composition, supporting that miR6443 specifically regulated S lignin biosynthesis by repressing F5H2 in P. tomentosa. Furthermore, saccharification assays revealed decreased hexose yields by 7.5–24.5% in miR6443‐overexpression plants compared with the wild‐type control, and increased hexoses yields by 13.2–14.6% in STTM6443‐overexpression plants. Collectively, we demonstrate that miR6443 modulates S lignin biosynthesis by specially regulating F5H2 in P. tomentosa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.