By using differential display PCR, we have identified 98 cDNA fragments from the rat dorsal hippocampus that are expressed differentially between the fast learners and slow learners in the water maze learning task. One of these cDNA fragments encodes the rat serum-and glucocorticoid-inducible kinase (sgk) gene. Northern blot analysis revealed that the sgk mRNA level was approximately 4-fold higher in the hippocampus of fast learners than slow learners. In situ hybridization results indicated that sgk mRNA level was increased markedly in CA1, CA3, and dentate gyrus of hippocampus in fast learners. Transient transfection of the sgk mutant DNA to the CA1 area impaired, whereas transfection of the sgk wild-type DNA facilitated water maze performance in rats. These results provide direct evidence that enhanced sgk expression facilitates memory consolidation of spatial learning in rats. These results also elucidate the molecular mechanism of glucocorticoidinduced memory facilitation in mammals. It is well accepted that long-term memory formation requires de novo RNA and protein synthesis. Evidence supporting this notion comes from the results that inhibition of mRNA and protein synthesis impairs long-term memory formation in various behavioral tasks in rats (1-3). This evidence suggests that neural activities associated with learning leads to the expression of various genes, and the protein products of these genes play important roles in the process of memory formation. Extensive efforts have been made to identify genes that are associated specifically with certain forms of learning and memory. For example, by using two-dimensional gel analysis, several candidate proteins have been identified that are related to long-term sensitization of the gill-withdrawal reflex in Aplysia (4). Screening in Drosophila mutants has yielded approximately 10 genes that are associated with the process of olfactory learning and memory (5). Further, by using a double-labeling method, proteins that show increased glycosylation as a result of training were identified in rats (6). The methods used in the above studies are effective; however, identifying and characterizing these genes takes a long time when using these methods. In addition, most of these studies were carried out in the invertebrate, in which the neuronal circuits and genes involved in memory formation probably are different from that in the vertebrate.In a more recent study, by using differential display-PCR (DD-PCR), we have successfully identified genes that are associated specifically with memory formation of one-way inhibitory avoidance learning in rats (7,8). Some of these results were confirmed further by a gene-knockout study (9). These results suggest that DD-PCR is an effective method in identifying genes that are involved in complex forms of learning and memory in the vertebrate. Therefore, we have adopted the same strategy in the present study to identify genes that are associated specifically with memory formation of spatial learning in rats. The Morris water maze...
The methyl-CpG-binding protein 2 (MeCP2) gene, MECP2, is an X-linked gene encoding the MeCP2 protein, and mutations of MECP2 cause Rett syndrome (RTT). However, the molecular mechanism of MECP2-mutation-caused RTT is less known. Here we find that MeCP2 could be SUMO-modified by the E3 ligase PIAS1 at Lys-412. MeCP2 phosphorylation (at Ser-421 and Thr-308) facilitates MeCP2 SUMOylation, and MeCP2 SUMOylation is induced by NMDA, IGF-1 and CRF in the rat brain. MeCP2 SUMOylation releases CREB from the repressor complex and enhances Bdnf mRNA expression. Several MECP2 mutations identified in RTT patients show decreased MeCP2 SUMOylation. Re-expression of wild-type MeCP2 or SUMO-modified MeCP2 in Mecp2-null neurons rescues the deficits of social interaction, fear memory and LTP observed in Mecp2 conditional knockout (cKO) mice. These results together reveal an important role of MeCP2 SUMOylation in social interaction, memory and synaptic plasticity, and that abnormal MeCP2 SUMOylation is implicated in RTT.
Amyloid-β (Aβ) oligomers largely initiate the cascade underlying the pathology of Alzheimer's disease (AD). Galectin-3 (Gal-3), which is a member of the galectin protein family, promotes inflammatory responses and enhances the homotypic aggregation of cancer cells. Here, we examined the role and action mechanism of Gal-3 in Aβ oligomerization and Aβ toxicities. Wild-type (WT) and Gal-3-knockout (KO) mice, APP/PS1;WT mice, APP/PS1;Gal-3 +/− mice and brain tissues from normal subjects and AD patients were used. We found that Aβ oligomerization is reduced in Gal-3 KO mice injected with Aβ, whereas overexpression of Gal-3 enhances Aβ oligomerization in the hippocampi of Aβ-injected mice. Gal-3 expression shows an age-dependent increase that parallels endogenous Aβ oligomerization in APP/PS1 mice. Moreover, Aβ oligomerization, Iba1 expression, GFAP expression and amyloid plaque accumulation are reduced in APP/ PS1;Gal-3 +/− mice compared with APP/PS1;WT mice. APP/PS1;Gal-3 +/− mice also show better acquisition and retention performance compared to APP/PS1;WT mice. In studying the mechanism underlying Gal-3-promoted Aβ oligomerization, we found that Gal-3 primarily co-localizes with Iba1, and that microglia-secreted Gal-3 directly interacts with Aβ. Gal-3 also interacts with triggering receptor expressed on myeloid cells-2, which then mediates the ability of Gal-3 to activate microglia for further Gal-3 expression. Immunohistochemical analyses show that the distribution of Gal-3 overlaps with that of endogenous Aβ in APP/PS1 mice and partially overlaps with that of amyloid plaque. Moreover, the expression of the Aβ-degrading enzyme, neprilysin, is increased in Gal-3 KO mice and this is associated with enhanced integrin-mediated signaling. Consistently, Gal-3 expression is also increased in the frontal lobe of AD patients, in parallel with Aβ oligomerization. Because Gal-3 expression is dramatically increased as early as 3 months of age in APP/PS1 mice and anti-Aβ oligomerization is believed to protect against Aβ toxicity, Gal-3 could be considered a novel therapeutic target in efforts to combat AD.
By using differential display PCR, we have previously identified 98 cDNA fragments from rat dorsal hippocampus, which are expressed differentially between the fast learners and slow learners from water-maze learning task. One cDNA fragment, which showed a higher expression level in fast learners, encodes the rat protein inhibitor of activated STAT1 (pias1) gene. Spatial training induced a significant increase in PIAS1 expression in rat hippocampus. Transient transfection of the wild-type (WT) PIAS1 plasmid to CA1 neurons facilitated, whereas transfection of PIAS1 siRNA impaired spatial learning in rats. Meanwhile, PIAS1WT increased STAT1 sumoylation, decreased STAT1 DNA binding and decreased STAT1 phosphorylation at Tyr-701 associated with spatial learning facilitation. But PIAS1 siRNA transfection produced an opposite effect on these measures associated with spatial learning impairment. Further, transfection of STAT1 sumoylation mutant impaired spatial acquisition, whereas transfection of STAT1 phosphorylation mutant blocked the impairing effect of PIAS1 siRNA on spatial learning. In this study, we first demonstrate the role of PIAS1 in spatial learning. Both posttranslational modifications (increased sumoylation and decreased phosphorylation) mediate the effect of PIAS1 on spatial learning facilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.