Background Sp1 is involved in the recurrence of glioblastoma (GBM) due to the acquirement of resistance to temozolomide (TMZ). Particularly, the role of Sp1 in metabolic reprogramming for drug resistance remains unknown. Methods RNA-Seq and mass spectrometry were used to analyze gene expression and metabolites amounts in paired GBM specimens (primary vs. recurrent) and in paired GBM cells (sensitive vs. resistant). ω-3/6 fatty acid and arachidonic acid (AA) metabolism in GBM patients were analyzed by targeted metabolome. Mitochondrial functions were determined by Seahorse XF Mito Stress Test, RNA-Seq, metabolome and substrate utilization for producing ATP. Therapeutic options targeting prostaglandin (PG) E2 in TMZ-resistant GBM were validated in vitro and in vivo. Results Among the metabolic pathways, Sp1 increased the prostaglandin-endoperoxide synthase 2 expression and PGE2 production in TMZ-resistant GBM. Mitochondrial genes and metabolites were obviously increased by PGE2, and these characteristics were required for developing resistance in GBM cells. For inducing TMZ resistance, PGE2 activated mitochondrial functions, including fatty acid β-oxidation (FAO) and tricarboxylic acid (TCA) cycle progression, through PGE2 receptors, E-type prostanoid (EP)1 and EP3. Additionally, EP1 antagonist ONO-8713 inhibited the survival of TMZ-resistant GBM synergistically with TMZ. Conclusion Sp1-regulated PGE2 production activates FAO and TCA cycle in mitochondria, through EP1 and EP3 receptors, resulting in TMZ resistance in GBM. These results will provide us a new strategy to attenuate drug resistance or to re-sensitize recurred GBM.
OBJECTIVE The use of robotics in spinal surgery has gained popularity because of its promising accuracy and safety. ROSA is a commonly used surgical robot system for spinal surgery. The aim of this study was to compare outcomes between robot-guided and freehand fluoroscopy-guided instrumentation in minimally invasive surgery (MIS)–transforaminal lumbar interbody fusion (TLIF). METHODS This retrospective consecutive series reviewed 224 patients who underwent MIS-TLIF from March 2019 to April 2020 at a single institution. All patients were diagnosed with degenerative pathologies. Of those, 75 patients underwent robot-guided MIS-TLIF, and 149 patients underwent freehand fluoroscopy-guided MIS-TLIF. The incidences of pedicle breach, intraoperative outcomes, postoperative outcomes, and short-term pain control were compared. RESULTS The patients who underwent robot-guided surgery had a lower incidence of pedicle breach (0.27% vs 1.75%, p = 0.04) and less operative blood loss (313.7 ± 214.1 mL vs 431.6 ± 529.8 mL, p = 0.019). Nonsignificant differences were observed in operative duration (280.7 ± 98.1 minutes vs 251.4 ± 112.0 minutes, p = 0.056), hospital stay (6.6 ± 3.4 days vs 7.3 ± 4.4 days, p = 0.19), complications (intraoperative, 1.3% vs 1.3%, p = 0.45; postoperative surgery-related, 4.0% vs 4.0%, p = 0.99), and short-term pain control (postoperative day 1, 2.1 ± 1.2 vs 1.8 ± 1.2, p = 0.144; postoperative day 30, 1.2 ± 0.5 vs 1.3 ± 0.7, p = 0.610). A shorter operative duration for 4-level spinal surgery was found in the robot-guided surgery group (388.7 ± 107.3 minutes vs 544.0 ± 128.5 minutes, p = 0.047). CONCLUSIONS This retrospective review revealed that patients who underwent robot-guided MIS-TLIF experienced less operative blood loss. They also benefited from a shorter operative duration with higher-level (> 3 levels) spinal surgery. The postoperative outcomes were similar for both robot-guided and freehand fluoroscopy-guided procedures.
OBJECTIVE The goal of the study was to define and quantify brain arteriovenous malformation (bAVM) compactness and to assess its effect on outcomes after Gamma Knife radiosurgery (GKRS) for unruptured bAVMs. METHODS Unsupervised machine learning with fuzzy c-means clustering was used to differentiate the tissue constituents of bAVMs on T2-weighted MR images. The percentages of vessel, brain, and CSF were quantified. The proposed compactness index, defined as the ratio of vasculature tissue to brain tissue, categorized bAVM morphology into compact, intermediate, and diffuse types according to the tertiles of this index. The outcomes of interest were complete obliteration and radiation-induced changes (RICs). RESULTS A total of 209 unruptured bAVMs treated with GKRS were retrospectively included. The median imaging and clinical follow-up periods were 49.2 and 72.3 months, respectively. One hundred seventy-three bAVMs (82.8%) achieved complete obliteration after a median latency period of 43.3 months. The rates of RIC and permanent RIC were 76.1% and 3.8%, respectively. Post-GKRS hemorrhage occurred in 14 patients (6.7%), resulting in an annual bleeding risk of 1.0%. Compact bAVM, smaller bAVM volume, and exclusively superficial venous drainage were independent predictors of complete obliteration. Diffuse bAVM morphology, larger bAVM volume, and higher margin dose were independently associated with RICs. CONCLUSIONS The compactness index quantitatively describes the compactness of unruptured bAVMs. Moreover, compact bAVMs may have a higher obliteration rate and a smaller risk of RICs than diffuse bAVMs. This finding could help guide decision-making regarding GKRS treatment for patients with unruptured bAVMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.