Immune checkpoint blockade therapy has been successful in treating some types of cancers but has not shown clinical benefits for treating leukemia
1
. This result suggests that leukemia exploits unique escape mechanisms. Certain immune inhibitory receptors that are expressed by normal immune cells are also present on leukemia cells. It remains unknown whether these receptors can initiate immune-related primary signaling in tumor cells. Here we show that LILRB4, an ITIM-containing receptor and a monocytic leukemia marker, supports tumor cell infiltration into tissues and suppresses T cell activity via ApoE/LILRB4/SHP-2/uPAR/Arginase-1 signaling axis in acute myeloid leukemia (AML) cells. Blocking LILRB4 signaling using knockout and antagonistic antibody approaches impeded AML development. Thus, LILRB4 orchestrates tumor invasion pathways in monocytic leukemia cells by creating an immune-suppressive microenvironment. LILRB4 represents a compelling target for treatment of monocytic AML.
Charcot-Marie-Tooth (CMT) disease is the most common inherited motor and sensory neuropathy. We have previously described a large Chinese CMT family and assigned the locus underlying the disease (CMT2L; OMIM 608673) to chromosome 12q24. Here, we report a novel c.423G-->T (Lys141Asn) missense mutation of small heat-shock protein 22-kDa protein 8 (encoded by HSPB8), which is also responsible for distal hereditary motor neuropathy type (dHMN) II. No disease-causing mutations have been identified in another 114 CMT families.
Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as "stitchers," to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication-licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer.next-generation sequencing | tumor heterogeneity | GRIN2A | replication
Background: Charcot-Marie-Tooth (CMT) disease, the most common hereditary peripheral neuropathy, is highly clinically and genetically heterogeneous, and mutations in at least 18 genes have been identified. Recently, mutations in small heat shock protein 27 (Hsp27) were reported to cause CMT disease type 2F and distal hereditary motor neuropathy. Objective: To investigate the frequency and phenotypic features of an Hsp27 mutation in Chinese patients with CMT disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.