International audienceSoil water erosion and shallow landslides depend on aggregate stability and soil shear strength. We investigated the effect of vegetation on both soil aggregate stability and shear strength (through direct shear tests) in former croplands converted to vegetated erosion protection areas within the context of China's sloping land conversion programme. Four treatments were analysed in plots comprised of (i) 4 year old crop trees, Vernicia fordii, where understory vegetation was removed; (ii) V. fordii and the dominant understory species Artemisia codonocephala; (iii) only A. codonocephala and (iv) no vegetation. Soil samples were taken at depths of 0-5 cm and 45-50 cm. Root length density (RLD) in five diameter classes was measured, soil organic carbon (SOC), hot water extractable carbon (HWEC), texture and Fe and Al oxides were also measured. We found that mean weight diameter after slow wetting (MWDSW) in the A-horizon, was significantly greater (0.94-1.01 mm) when A. codonocephala was present compared to plots without A. codonocephala (0.57-0.59 mm). SOC and RLD in the smallest diameter class (< 0.5 mm), were the variables which best explained variability in MWDSW. A significant positive linear relationship existed between MWDSW and soil cohesion but not with internal angle of friction. As herbaceous vegetation was more efficient than trees in improving aggregate stability, this result suggests that the mechanisms involved include modifications of the cohesive forces between soil particles adjacent to plant roots and located in the enriched in SOC rhizosphere, thus also affecting shear strength of the corresponding soil volume. Thus, vegetation stabilised soil under different hierarchical levels of aggregate organisation, i.e. intra- and inter-aggregate. Our results have implications for the efficacy of techniques used in land conversion programs dedicated to control of soil erosion and shallow landslides. We suggest that mixtures of different plant functional types would improve soil conservation on slopes, by reducing both surface water erosion and shallow substrate mass movement. Planting trees for cropping or logging, and removing understory vegetation is most likely detrimental to soil conservation
Ion migration has been regarded as the major cause of photocurrent hysteresis. Here we use photoluminescence (PL) and optical images, combined with Galvanostatic measurement, to detect the ionic motion. We observe an irreversible PL and optical transmittance change after electric poling. By comparing a neat perovskite film with the sample coated by poly(methyl methacrylate) (PMMA), polyethylene glycol (PEG), and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), we found that PCBM effectively inhibits ionic motion near the surface of the perovskite.We further evidenced the donor−acceptor complex formed between PCBM and perovskite, implying the mechanism of inhibited ion migration by PCBM. We close by demonstrating that PCBM can also be introduced on the top of perovskite fim in an n−i−p TiO 2 planar structure, to achieve an average 14% steady-state output over 2.3 × 10 5 s (∼64 h). This work highlights the importance of inhibiting ionic motion in perovskite solar cells.
We design a series of metal-free donor-π-bridge molecules (denoted VB0–VB4) based on a new donor groupullazine donoras sensitizers for dye sensitized solar cell (DSSC) applications. Density functional theory (DFT) and time-dependent DFT calculations reveal that the physical properties of dyes, including spectral response, light harvesting efficiency, and electron injection rate, are systematically improved by combining ullazine donor to a series of length changing π bridges. Dye VB2 is the best candidate thanks to its outstanding performance on key parameters and achieving a balance between competing factors. Compared to two other series of moleculesL and M dyes, which differ from VB dyes by only the donor groupVB dyes have the largest light harvesting efficiency and the largest number of electrons injected to the conduction band of TiO2. These results suggest that the ullazine group can serve as an excellent donor for future DSSC applications.
Light‐induced interlayer ultrafast charge transfer in 2D heterostructures provides a new platform for optoelectronic and photovoltaic applications. The charge separation process is generally hypothesized to be dependent on the interlayer stackings and interactions, however, the quantitative characteristic and detailed mechanism remain elusive. Here, a systematical study on the interlayer charge transfer in model MoS2/WS2 bilayer system with variable stacking configurations by time‐dependent density functional theory methods is demonstrated. The results show that the slight change of interlayer geometry can significantly modulate the charge transfer time from 100 fs to 1 ps scale. Detailed analysis further reveals that the transfer rate in MoS2/WS2 bilayers is governed by the electronic coupling between specific interlayer states, rather than the interlayer distances, and follows a universal dependence on the state‐coupling strength. The results establish the interlayer stacking as an effective freedom to control ultrafast charge transfer dynamics in 2D heterostructures and facilitate their future applications in optoelectronics and light harvesting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.