correspondence between case reports and fatality data. These data also establish that mortality rates are not affected by epidemic phase 24. Further confirmation of these results is provided by an analysis of the Aberdeen data (N.B.M-B., P.R. and B.T.G., manuscript in preparation). Concerning infection-induced mortality rates, classic work by Butler 24 , Bartlett 25 , Creighton 5 and others indicates significant mortality due to measles and whooping cough during these periods. Estimates of case fatality rates for measles vary widely, from 1-2% in the postwar era up to 46% prewar 14,26,27 , whereas estimates for whooping cough are in the 3-15% range 24. Data analysis These time series contain a substantial annual component and are further complicated by increasing population sizes over the two periods examined. Hence, analyses of the relationship between measles and whooping cough outbreaks were carried out on de-trended data. We used three separate methods. First, Pearson correlation coefficients were estimated for data aggregated over each epidemic year (October to October). Second, we carried out a linear regression of annual counts of measles against whooping cough and used the slope as a measure of synchrony. The results of this technique were qualitatively identical to those of the Pearson correlation, so we present only those. Finally, we also used Wavelet spectra to explore phase differences between filtered time series 28,29. Further information can be found in the Supplementary Information.
Plant innate immune response to pathogen infection includes an elegant signaling pathway leading to reactive oxygen species generation and resulting hypersensitive response (HR); localized programmed cell death in tissue surrounding the initial infection site limits pathogen spread. A veritable symphony of cytosolic signaling molecules (including Ca2+, nitric oxide [NO], cyclic nucleotides, and calmodulin) have been suggested as early components of HR signaling. However, specific interactions among these cytosolic secondary messengers and their roles in the signal cascade are still unclear. Here, we report some aspects of how plants translate perception of a pathogen into a signal cascade leading to an innate immune response. We show that Arabidopsis thaliana CYCLIC NUCLEOTIDE GATED CHANNEL2 (CNGC2/DND1) conducts Ca2+ into cells and provide a model linking this Ca2+ current to downstream NO production. NO is a critical signaling molecule invoking plant innate immune response to pathogens. Plants without functional CNGC2 lack this cell membrane Ca2+ current and do not display HR; providing the mutant with NO complements this phenotype. The bacterial pathogen–associated molecular pattern elicitor lipopolysaccharide activates a CNGC Ca2+ current, which may be linked to NO generation due to buildup of cytosolic Ca2+/calmodulin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.