Background: Chemotherapy decreases fitness performance via repression of cardiopulmonary function and oxidative stress. This study was designed to investigate whether exercise intervention could improve exercises capacity and reduce systemic oxidative stress in patients with head and neck (H&N) cancer receiving chemotherapy. Methods: This is a single-center study. Forty-two H&N cancer patients who were undergoing chemotherapy were recruited in this study. An 8-week exercise intervention was performed by conducting the combination of aerobic and resistance exercise 3 days a week. The exercise training was conducted by a physiotherapist. The exercise capacity and exercise responses were measured from blood pressure (BP) and heart rate (HR). Oxidative stress markers from human plasma, such as total antioxidant capacity, 8-hydroxy-2-deoxyguanosine, malondialdehyde, and carbonyl content, were tested by activity kits. Results: We provide compelling evidence that exercise training ameliorated exercise responses and increased exercise capacity by repressing resting BP and increasing 1and 3-min BP recovery. We also found the resting HR was reduced, and the 1-and 3min HR recovery was increased after exercise training. In addition, the rating of perceived exertion after the peak exercise was reduced after exercise intervention. We also found that exercise training repressed oxidative stress markers by elevation of total antioxidant capacity and suppression of 8-OHd and carbonyl content in plasma. Discussion: We clearly demonstrate that exercise can promote exercise capacity and reduce oxidative stress in H&N cancer patients receiving chemotherapy, which might guide new therapeutic approaches for cancer patients, especially those undergoing chemotherapy.
The droplet formation process of a novel piezo-actuated micro-injector is studied using a computational approach. In simulations, the theoretical model is based on the time-dependent threedimensional conservation equations of mass and momentum. The surface tension effect at the gasliquid boundary is treated using the continuous surface force (CSF) scheme. The volume-of-fluid (VOF) method in conjunction with the piecewise linear interface construction (PLIC) technique is exploited to describe interfacial movements. The time evolution of the droplet meniscus shape is predicted throughout the formation process and compared with Shield's micro-photographed images for the computer package validation. To explore the feasibility of proposed new micro-injector in practical applications, the droplet deformation characteristics are determined in terms of droplet topology, breakup length and time, and flight velocity for dispensing different liquids such as water, anisol, Pedot, PLED, and blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.