High-risk human papillomaviruses (HPVs) are causative agents of anogenital cancers and a fraction of head and neck cancers. The mechanisms involved in the progression of HPV neoplasias to cancers remain largely unknown. Here, we report that O-linked GlcNAcylation (O-GlcNAc) and O-GlcNAc transferase (OGT) were markedly increased in HPV-caused cervical neoplasms relative to normal cervix, whereas O-GlcNAcase (OGA) levels were not altered. Transduction of HPV16 oncogene E6 or E6/E7 into mouse embryonic fibroblasts (MEFs) up-regulated OGT mRNA and protein, elevated the level of O-GlcNAc, and promoted cell proliferation while reducing cellular senescence. Two HR HPV genes, E6 and E7, are potent oncogenes based on their immortalizing and transforming activities in cell culture systems and their capacities to induce tumors in animal models. The HR HPV E7 oncoprotein binds to more than 20 cellular targets and interferes with multiple cellular processes, leading to deregulated cell cycle, centrosome amplification, DNA damage, anoikis resistance, anchorage-independent cell growth and malignant transformation as well as immune surveillance evasion.
The 45, 55, 65 and 100 kDa ATP-binding proteinases (ATPBPases) of the heat-shocked (44 for 30 min, recovery for 12 h) rat C6 glioma cells were purified by DEAE-ionexchange and ATP-affinity chromatography. Their molecular masses, isoelectric points (pI), pH-optima and other properties were analyzed by native proteinase gels. It was shown that the 65 kDa ATPBPase is specifically induced by heat shock and not detectable in control cells. Its N-terminal 1-9 amino acid sequence was determined by Edman degradation, but no homologies to other proteins in the protein data bases were found. 30 and 31 kDa proteinases can be cleaved from the 45, 55 and 65 kDa proteinases to which they are linked. A possible relationship of the heat-induced 65 kDa ATP-BPase with the ATP-dependent proteinases (ATP-DPases) in prokaryotes and eukaryotes is discussed. 136
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.