Interviews from strength and conditioning coaches across all levels of athletic competition identified their two biggest concerns with the current state of wearable technology: (a) the lack of solutions that accurately capture data “from the ground up” and (b) the lack of trust due to inconsistent measurements. The purpose of this research is to investigate the use of liquid metal sensors, specifically Liquid Wire sensors, as a potential solution for accurately capturing ankle complex movements such as plantar flexion, dorsiflexion, inversion, and eversion. Sensor stretch linearity was validated using a Micro-Ohm Meter and a Wheatstone bridge circuit. Sensors made from different substrates were also tested and discovered to be linear at multiple temperatures. An ankle complex model and computing unit for measuring resistance values were developed to determine sensor output based on simulated plantar flexion movement. The sensors were found to have a significant relationship between the positional change and the resistance values for plantar flexion movement. The results of the study ultimately confirm the researchers’ hypothesis that liquid metal sensors, and Liquid Wire sensors specifically, can serve as a mitigating substitute for inertial measurement unit (IMU) based solutions that attempt to capture specific joint angles and movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.