Deep-seated tectonic tremors have been regarded as an observation tied to interconnected fluids at depth, which have been well documented in worldwide subduction zones and transform faults but not in a collisional mountain belt. In this study we explore the general features of collisional tremors in Taiwan and discuss the possible generation mechanism. In the 4 year data, we find 231 ambient tremor episodes with durations ranging from 5 to 30 min. In addition to a coseismic slip-induced stress change from nearby major earthquake, increased tremor rate is also highly correlated with the active, normal faulting earthquake swarms at the shallower depth. Both the tremor and earthquake swarm activities are confined in a small, area where the high attenuation, high thermal anomaly, the boundary between high and low resistivity, and localized veins on the surfaces distributed, suggesting the involvement of fluids from metamorphic dehydration within the orogen.
The KrF pulsed excimer laser (248nm) and the frequency-tripled neodymium doped yttrium aluminum garnet laser (355nm) have been used to separate GaN thin films from sapphire substrates and transfer to bond other substrate. However, these processes would increase the dislocation density, resulting in an increase of the leakage current. In this study, the effects of these two laser sources on the reverse-bias leakages of InGaN-GaN light-emitting diodes were studied. (c) 2007 American Institute of Physics
The InGaN-GaN epitaxial films were grown by low-pressure metal-organic chemical vapor deposition on a sapphire substrate, and then the light-emitting diode ͑LED͒ with double roughened ͑p-GaN and undoped-GaN͒ surfaces was fabricated by surface-roughening, wafer-bonding, and laser lift-off technologies. It was found that the front side luminance intensity of double roughened LED was 2.77 times higher than that of the conventional LED at an injection current of 20 mA. The backside luminance intensity was 2.37 times higher than that of the conventional LED. This is because the double roughened surfaces can provide photons multiple chances to escape from the LED surface, and redirect photons, which were originally emitted out of the escape cone, back into the escape cone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.