Spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), may utilize wild 'Himalaya' blackberry (HB) Rubus armeniacus Focke or other non-crop plants as refugia and possibly exploit adjacent field margins before colonizing cultivated fruiting crops. Studies were conducted to determine the role of field margins containing HB and their effect on D. suzukii activity, density and distribution in an adjacent commercial red raspberry crop. One-ha plots adjacent to field margins containing HB or known non-host (NH) grass crops were established in 2011 and 2012 and replicated three times. Each plot contained two transects with monitoring traps for D. suzukii in the field margin (0 m) and spaced approximately 10 (crop boundary), 40, 70 and 100 m into the adjacent crop (n = 10 traps/plot). Field margin vegetation was treated with a 10% chicken egg white mark solution weekly from pre-harvest until the end of harvest using a cannon sprayer. Adult D. suzukii were collected from traps weekly and analysed for the presence of the egg white mark using an egg white-specific enzyme-linked immunosorbent assay (ELISA). During both years, marked flies and total flies were captured in higher numbers in HB field margins, whereas virtually no flies were captured in field margins containing no known alternative host. Similarly, more flies were captured in the crop near HB than near NH. Spatial Analysis by Distance IndicEs (SADIE) and mean D. suzukii trap captures additionally displayed significantly higher fly densities in the raspberry field near HB than near NH. These results suggest that HB may contribute to elevated D. suzukii populations and pest pressure in comparison with field margins containing no known alternate host vegetation for D. suzukii. Having closely adjacent non-crop alternate host landscapes may result in increased D. suzukii pest pressure.
Abstract:The growth of the blueberry industry in the past three decades has been remarkably robust. However, a labor shortage for hand harvesting, increasingly higher labor costs, and low harvest efficiencies are becoming bottlenecks for sustainable development of the fresh market blueberry production. In this study, we evaluated semi-mechanical harvesting systems consisting of a harvest-aid platform with soft fruit catching surfaces that collected the fruit detached by portable, hand-held, pneumatic shakers. The softer fruit catching surfaces were not glued to the hard sub-surfaces of the harvest-aid platform, but suspended over them. Also, the ergonomic aspect of operating powered harvesting equipment was determined. The pneumatic shakers removed 3.5 to 15 times more fruit (g/min) than by hand. Soft fruit catching surfaces reduced impact force and bruise damage. Fruit firmness was higher in fruit harvested by hand compared to that by pneumatic shakers in some cultivars. The bruise area was less than 8% in fruit harvested by hand and with semi-mechanical harvesting system. The percentage of blue, packable fruit harvested by pneumatic shakers comprised as much as 90% of the total, but less than that of hand-harvested fruit. The ergonomic analysis by electromyography showed that muscle strain in the back, shoulders, and forearms was low in workers operating the light-weight, pneumatic shakers that were tethered to the platform with a tool balancer. The new harvesting method can reduce the labor requirement to about 100 hour/hectare/year and help to mitigate the rising labor cost and shortage of workers for harvesting fresh-market quality blueberries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.